Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Uchebnik_fiziki.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
12.67 Mб
Скачать

3. Взаимодействие рентгеновского излучения с веществом (когерентное рассеяние, некогерентное рассеяние, фотоэффект).

При падении рентгеновского излучения на какое-либо тело оно в небольшом количестве отражается от него, а в основном проходит вглубь. В массе тела излучение частично поглощается, частично рассеивается, а частично проходит насквозь. Проходя через тело, фотоны рентгеновского излучения, взаимодействуют в основном с электронами атомов и молекул вещества. Регистрация и использование рентгеновского излучения, а также воздействия его на биологические объекты определяется первичными процессами взаимодействия рентгеновского фотона с электронами. В зависимости от соотношения энергии Е фотона и энергии ионизации АИ имеют место три главных процесса.

а) Когерентное рассеяние.

Р ассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Взаимодействие фотона с электронами внутренних оболочек, крепко связанных с ядром, изменяет только его направление, не изменяя его энергии, а значит длины волны (рис.5).

Когерентное рассеяние возникает, если энергия фотона меньше энергии ионизации: Е = h<АИ. Так как энергия фотона и энергия атома не изменяется, то когерентное рассеяние не вызывает биологического действия. Однако при создании защиты от рентгеновского излучения следует учитывать возможность изменения направления первичного пучка.

б) Некогерентное рассеяние (эффект Комптона).

В 1922 году А. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Рассеяние рентгеновского излучения с изменением длины волны называется эффектом Комптона. Он возникает при взаимодействии фотона любых энергий со слабо связанными с ядром электронами внешних оболочек атомов (рис.6). Электрон отрывается от атома (такие электроны называются электронами отдачи). Энергия фотона уменьшается (длина волны соответственно увеличивается), а также изменяется направление его движения. Эффект Комптона возникает, если энергия фотона рентгеновского излучения больше энергии ионизации: , . При этом появляются электроны отдачи с кинетической энергией ЕК. Атомы и молекулы становятся ионами. Если ЕК значительна, то электроны могут ионизировать соседние атомы путем соударения, образуя новые (вторичные) электроны.

в) Фотоэффект.

Если энергия фотона h достаточна для отрыва электрона, то при взаимодействии с атомом фотон поглощается, а электрон отрывается от него. Это явление называется фотоэффектом. Атом ионизируется (фотоиноизация). При этом электрон приобретает кинетическую энергию и, если последняя значительна, то он может ионизировать соседние атомы путем соударения, образуя новые (вторичные) электроны. Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атом или молекулы. У некоторых веществ это приводит к последующему излучению фотонов в области видимого излучения (рентгенолюминесценция), а в тканях – к активации молекул и фотохимическим реакциям.

Фотоэффект характерен для фотонов с энергией порядка 0,5-1 МэВ.

Три основных процесса взаимодействия, рассмотренные выше, являются первичными, они приводят к последующим вторичным, третичным и т.д. явлениям. При попадании рентгеновского излучения в вещество может происходить целый ряд процессов, прежде чем энергия рентгеновского фотона превратится в энергию теплового движения.

В результате указанных выше процессов первичный поток рентгеновского излучения ослабляется. Этот процесс подчиняется закону Бугера. Запишем его в виде: Ф =Ф0е-х, где -линейный коэффициент ослабления, зависящий от природы вещества (главным образом от плотности и атомного номера) и от длины волны излучения (энергия фотона). Его можно представить состоящим из трех слагаемых, соответствующих когерентному рассеянию, некогерентному рассеянию и фотоэффекту: .

Т ак как линейный коэффициент поглощения зависит от плотности вещества, то предпочитают пользоваться массовым коэффициентом ослабления, который равен отношению линейного коэффициента ослабления к плотности поглотителя и не зависит от плотности вещества . Зависимость потока (интенсивность) рентгеновского излучения от толщины поглощающего фильтра представлена на рис.7 для Н2О, Al, и Cu. Расчеты показывают, что слой воды толщиной 36 мм, алюминия 15 мм и меди 1,6 мм уменьшают интенсивность рентгеновского излучения в 2 раза. Эту толщину называют толщиной половинного слоя . Если вещество ослабляет рентгеновское излучение наполовину, то , тогда , или , ; ; . Зная толщину половинного слоя можно всегда определить . Размерность .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]