Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория и методика обучения математике.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
259.07 Кб
Скачать

4.Общая начальная математическая подготовка в 1-5 классах

Содержание начального курса математики.

Начальный курс математики, изучаемый в 1-3 классах (с 7 лет) и в 1-4 классах (с 6 лет) является той частью школьного курса математики, где закладывается фундамент математического образования школьников.

Основные вопросы начального курса математики: Понятие о натуральном числе и арифметических действиях. Изучение сложения и вычитания в пределах. Многозначные числа. Правила о порядке выполнения арифметических действий. Решение задач. Понятие величины. Геометрический материал. Элементы алгебраической пропедевтики. Вопросы теории и вопросы практического характера органически связываются между собой. Например, переместительный закон сложения вводится индуктивно, т.е. на основе обобщения частных фактов, после чего, например, случаи сложения вида 2+6 выполняются так: 2+6=6+2=8. При этом хорошо усваиваются теоретические вопросы и формируются осознанные вычислительные навыки.2. Математические понятия, свойства, закономерности раскрываются в их взаимосвязи. Например, при изучении арифметических действий раскрываются зависимости между их компонентами и результатами.3. В процессе изучения математики каждое математическое понятие получает свое развитие, т.е. постепенно раскрываются его новые свойства, связи с другими понятиями. Например, после ознакомления с умножением, через несколько уроков вводятся термины, еще через несколько уроков - перестановка множителей и еще позднее - правило нахождения неизвестного множителя, где устанавливается связь между умножением и делением. Далее вводятся правила умножения суммы на число, числа на сумму, числа на произведение. Такой подход обеспечивает более высокий уровень усвоения математических знаний.4. Сходные или связанные между собой вопросы рассматриваются в сравнении. Например, действие сложения и вычитания вводятся одновременно. В этом случае легко выделить существенное сходство и различие между ними, что помогает предотвратить ошибки учащихся.

Федеральные государственные образовательные стандарты (ФГОС) — совокупность требований, обязательных при реализации основных образовательных программ начального общего, основного общего, среднего (полного) общего, начального профессионального, среднего профессионального и высшего профессионального образования образовательными учреждениями, имеющими государственную аккредитацию. К Федеральные государственные образовательные стандарты обеспечивают: -единство образовательного пространства Российской Федерации; преемственность основных образовательных программ начального общего, основного общего, среднего (полного) общего, начального профессионального, среднего профессионального и высшего профессионального образования; духовно-нравственное развитие и воспитание

5.Методика базового образования основной школы.

Пропедевтическая математическая подготовка в 5-6 классах.

Пропедевтика, введение в какую-либо науку, предварительный вводный курс, систематически изложенный в сжатой и элементарной форме. В дидактике под пропедевтикой вообще понимают подготовительный курс, представляющий введение в какую-либо науку или учебный предмет и отличающийся элементарной формой изложения. В 5 классе можно указать ряд упражнений, в которых учащиеся имеют дело в скрытой форме с переменными величинами. К ним относятся упражнения на изменение суммы, разности, произведения и частного дроби. В 6 классе функциональная пропедевтика расширяется.

Содержание курса математики 5-6 классов Арифметика

Натуральные числа. Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Степень с натуральным показателем. Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическим способом. Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком. Дроби. Обыкновенная дробь. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части. Десятичная дробь. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Геометрия. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины

Содержание курса математики 7-9 классах

Курс алгебры 7-9 классов является базовым для математического образования и развития школьников. Практическая значимость школьного курса алгебры 7-9 классов состоит в том, что предметом её изучения являются количественные отношения и процессы реального мира, описанные математическими моделями.

Содержание курса алгебры в 7-9 классах представлено в виде следующих содержательных разделов: «Алгебра», «Числовые множества», «Функции», «Элементы прикладной математики», «Алгебра в историческом развитии». Содержание раздела «Алгебра» формирует знания о математическом языке, необходимые для решения математических задач, задач из смежных дисциплин, а также практических задач. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений, систем уравнений и неравенств. Материал данного раздела представлен в аспекте, способствующем формированию у учащихся умения пользоваться алгоритмами. Существенная роль при этом отводится развитию алгоритмического мышления — важной составляющей интеллектуального развития человека. Содержание раздела «Числовые множества» нацелено на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Материал раздела развивает понятие о числе, которое связано с изучением действительных чисел. Цель содержания раздела «Функции» — получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования процессов и явлений окружающего мира. Соответствующий материал способствует развитию воображения и творческих способностей учащихся, умению использовать различные языки математики (словесный, символический, графический).Содержание раздела «Элементы прикладной математики» раскрывает прикладное и практическое значения математики в современном мире. Материал данного раздела способствует формированию умения представлять и анализировать различную информацию, пониманию вероятностного характера реальных зависимостей. Раздел «Алгебра в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, создания культурно-исторической среды обучения.

Дифференцированное изучение курса математики.

Признание математики в качестве обязательного компонента общего среднего образования в большей мере обуславливает необходимость осуществления дифференцированного подхода к учащимся - как к определенным их группам (сильным, средним, слабым), так и к отдельным ученикам. Дифференцированный (групповой и индивидуальный) подход становится необходим не только для поднятия успеваемости слабых учеников, но и для развития сильных учеников, причем его понимание не должно сводиться лишь к эпизодическому добавлению в процессе обучения слабо успевающим учащимся тренировочных задач, а более подготовленным - задач повышенной трудности. Более полное понимание дифференциации обучения предполагает использование ее на различных этапах изучения математического материала: подготовки учащихся к изучению нового, введения нового, применения к решению задач, этапа контроля за усвоением и др.

Дифференцировано может быть содержание изучаемого материала (выделение обязательного и дополнительного); дифференцировать можно методы (приемы) обучения, варьируя ими с целью оказания различной степени индивидуальной или групповой помощи ученикам при организации самостоятельной работы по изучению нового, при решении задач и др.; дифференцировать можно средства и формы обучения. Опыт передовых учителей показывает, что дифференциация может затрагивать все элементы методической системы обучения и в этом случае она дает наибольший эффект в условиях обычного класса.

Сущность понятия дифференциации

Личность каждого человека наделена только ей присущим сочетанием черт и особенностей, образующих её индивидуальность. Индивидуальность – это сочетание психологических особенностей человека, составляющих его своеобразие, его отличие от других людей. особенности, идет своим путем.

Дифференциация в переводе с латинского означает разделение, расслоение целого на различные части, формы, ступени.

Дифференцированное обучение – это:

1) форма организации учебного процесса, при которой учитель работает с группой учащихся, составленной с учетом наличия у них каких-либо значимых для учебного процесса общих качеств;

2) часть общей дидактической системы, которая обеспечивает специализацию учебного процесса для различных групп обучаемых.

Дифференциация обучения (дифференцированный подход) – это:

1) создание разнообразных условий обучения для различных школ, классов, групп с целью учета особенностей их контингента;

2) комплекс методических, психологических, организационно- управленческих мероприятий.

Индивидуальный подход в учебном процессе означает действенное внимание к каждому ученику, его творческой индивидуальности, учет в процессе обучения индивидуальных особенностей, предполагает разумное сочетание фронтальных, групповых и индивидуальных заданий для повышения качества обучения и развития каждого школьника.