- •Недостатки:
- •Совмещенные коммутаторы
- •Почему трудно коммутировать
- •Подрывы в презентационных системах и домашнем видеооборудовании
- •Помехи при коммутации звука
- •«Умное» взаимодействие
- •Наращивание коммутаторов
- •Увеличение числа входов
- •Увеличение числа выходов
- •Наращивание функциональности
- •Дополнительные функции коммутаторов
- •Управление коммутаторами
Подрывы в презентационных системах и домашнем видеооборудовании
В таких системах переключение входов производится обычно гораздо реже, чем в ТВ-студиях, а зритель готов мириться с некоторой нестабильностью картинки в момент коммутации. Обычно специальных мер по предотвращению подрывов и не принимается.
В то же время в более дорогих устройствах коммутации, ради дополнительного зрительного комфорта, и в ответственных презентационных системах, рассчитанных на работу с важной аудиторией, такие меры предусмотрены.
В системах данного вида источники сигналов (проигрыватели, компьютеры, эфирное ТВ, видеомагнитофоны и т.д.) практически всегда несинхронны, и искусственно их засинхронизировать (как было описано выше для ТВ-студий) оказывается крайне дорого. Кроме того, сигналы от таких источников зачастую представлены в разных форматах (например композитное видео, YUV, VGA или, например, аналоговый либо цифровой звук), и их сначала, до коммутации, надо как-то привести к единому виду.
Блок коммутации обеспечивает визуально гладкую смену одного изображения другим, применяя метод «перехода через затемнение»
В коммутаторах-масштабаторах, например, все эти проблемы решаются одновременно. Блок масштабирования приводит любой выбранный со входа сигнал к единому формату (обычно VGA или DVI/HDMI). Блок коммутации обеспечивает визуально гладкую смену одного изображения другим, применяя метод «перехода через затемнение». При таком переходе первое изображение плавно уводится в «черное», а затем из черного плавно появляется изображение от другого источника. Зрительно такой эффект воспринимается комфортно, а скорость переходов обычно можно регулировать. Подробнее о масштабаторах см. брошюру «Преобразование сигналов. Масштабаторы».
в некоторых презентационных коммутаторах используется метод «задержки сигнала»
При переключении между несинхронными источниками (например, сигналов VGA от нескольких компьютеров) в некоторых презентационных коммутаторах используется метод «задержки сигнала». При этом сигналы синхронизации (H и V) от одного источника переключаются сразу на второй, а вот каналы собственно изображения (R, G, B) на некоторое время уводятся в «черное». Монитор (проектор, плазма), использующийся в презентационной системе, некоторое время подстраивается под новые параметры синхронизации, при этом на его экране ничего нет (черная картинка). Когда подстройка закончена, коммутатор включает каналы RGB, и на экране сразу появляется устойчивая картинка от второго источника. И вновь, такой переход визуально комфортнее «прыгающей» картинки, которая получилась бы без использования задержки сигнала.
Помехи при коммутации звука
Аналоговые аудиосигналы коммутировать проще, поскольку в них отсутствует само понятие синхронизации. В то же время и здесь есть подводные камни — если не принимать особых мер, при коммутации могут прослушиваться щелчки.
Для корректной коммутации аудиосигналов используется специальная схема, с помощью которой переключение происходит в момент, когда мгновенные значения сигналов переключаемых источников равны нулю (схема просто ждет, когда такой момент наступит; аудиосигналы меняются очень быстро, и задержка коммутации оказывается практически незаметной).
Рис.
7. Щелчки при переключении аудиосигналов
Рис.
8. Способ избежать щелчков
Другой способ «мягкой» коммутации аудиосигналов — использование аудиомикшера или соответствующих цепей внутри коммутатора, когда первый сигнал плавно «уводится», а другой — «вводится» вместо него (при этом, конечно, неизбежна небольшая слышимая задержка коммутации).
Рис.
9. Мягкая коммутация с помощью микшера
КОММУТАЦИЯ ЦИФРОВЫХ СИГНАЛОВ
Работа с цифровыми сигналами (SDI, DVI/HDMI, Firewire/DV, AES/EBU, S/PDIF) имеет свои особенности, которые должны учитываться при построении коммутаторов и при работе с ними.
Перетактирование
Обычно все цифровые сигналы (как видео, так и аудио, равно как и большинство сигналов скоростных компьютерных интерфейсов) передаются в строгом соответствии с синхросеткой, т.е. «под руководством» специальных синхросигналов («тактовых» сигналов). Такие синхросигналы в явном или неявном виде обязательно передаются вместе с основным сигналом. Приемник на основе такой синхросетки может выделить полезный сигнал.
Пока все цифровые сигналы передаются ИСКЛЮЧИТЕЛЬНО по аналоговым линиям связи (т.к. других пока не изобрели), и поэтому подвержены всевозможным искажениям и воздействию случайных факторов
Если бы в процессе передачи сигнал не «разъезжался» относительно синхросетки, проблем бы не возникало. Однако пока все цифровые сигналы передаются ИСКЛЮЧИТЕЛЬНО по аналоговым линиям связи (т.к. других пока не изобрели), и поэтому подвержены всевозможным искажениям и воздействию случайных факторов. Поэтому реально принятый на конце длинной линии связи цифровой сигнал оказывается чаще всего сдвинутым по времени относительно «идеального». Самым грозным видом такого сдвига для распространенных видео и аудио сигналов является т.н. «джиттер», или фазовое дрожание. Принятые цифровые импульсы оказываются чуть уже или чуть шире исходных5. Если не принимать специальных мер, такие сдвижки могут привести к самым неприятным последствиям, вплоть до срыва или зашумления видеокартинки или «скрежета» в аудиоканале.
Для борьбы с этим явлением применяется т.н. перетактирование (или пересинхронизация, reclocking), т.е. искусственное восстановление правильной фазы («тактов») сигнала, с привязкой его к «идеальной» синхросетке.
Рис.
10. Джиттер и как его подавляют
Схема подавления джиттера точно «знает», в какой момент времени ДОЛЖЕН встретиться очередной фронт или импульс сигнала, и, если реально пришедший фронт или импульс отличается от ожидаемого не слишком сильно (т.е. джиттер еще не превысил критического значения), схема искусственно «подвигает» его на законное место. Чтобы схема могла работать, ей приходится «помнить» внутри себя идеальное положение тактов и синхросигналов (ведь их тоже надо как-то восстановить после длинной линии связи), что достигается с помощью изощренных инженерных решений (чаще всего используется кольцо ФАПЧ с инерционным звеном).
После перетактирования НИКАКОГО джиттера не остается
После перетактирования НИКАКОГО джиттера не остается (если он, конечно, изначально не превышал критического значения, после которого с ним уже не справиться). Обычно линии связи обеспечивают уровень джиттера, который легко парируется входными схемами приборов. Именно это позволяет говорить о том, что цифровые сигналы можно передавать ВООБЩЕ без потерь (в отличие от аналоговых, которые невозможно восстановить по какому-либо критерию на приемном конце).
Позволяет говорить о том, что цифровые сигналы можно передавать ВООБЩЕ без потерь
Перетактирование также позволяет многократно каскадировать цифровые приборы, т.е. включать последовательно, один за другим, много коммутаторов, распределителей и т.д. Если каждый прибор производит перетактирование, никаких потерь в системе не будет6.
Коммутатор цифровых видео или аудиосигналов, если он рассчитан на работу со сколько-нибудь длинными линиями связи (десятки метров и выше), должен быть оснащен схемами перетактирования по каждому входу.
