- •2.1. Квантование и энергетические (фоковские) состояния
- •2.3. Когерентные состояния электромагнитного поля
- •Лекция 8 Сжатые состояния электромагнитного поля
- •3.1. Полуклассическая теория Бора
- •3.2. Принцип соответствия между классической и квантовой физикой
- •3.3. Сила осциллятора атомного перехода
- •Силы осцилляторов для атома водорода
- •3.5. Поглощение и рассеяние света атомом
- •Парадокс Эйнштейна — Подольского — Розена
- •Суть парадокса
- •Объяснение парадокса
- •Измерение и состояние
- •Соотношение неопределённостей
- •Нелокальность
- •Принцип тождественности
- •«Критерий физической реальности» и понятие «полноты физической теории
- •Критика парадокса Ответ Бора
- •Предсказания квантовой механики для эпрб-опыта
- •Теорема Белла и ее экспериментальные проверки
- •Популяризация
- •Спор Бора и Эйнштейна, эпр-Парадокс
- •Альберт Эйнштейн и Нильс Бор (Шестой Сольвеевский конгресс, 1930).
- •Неравенства Белла, экспериментальные проверки неравенств
- •Лауреаты премии Вольфа по физике 2010 года
- •Современный этап
- •Суть эксперимента
- •Получение запутанных квантовых состояний
- •Механизм явления
- •Применение «Сверхсветовой коммуникатор» Херберта
- •Квантовая коммуникация
- •Квантовая телепортация
- •История вопроса
- •Причины влияние частиц
- •Лекция №13 Квантовые неразрушающие измерения.
- •Наблюдение фотона без его уничтожения.
- •Сводная таблица
- •История
- •Создание единой теории фундаментальных взаимодействий
Квантовая коммуникация
Теория квантовой механики запрещает передачу информации со сверхсветовой скоростью. Это объясняется принципиально вероятностным характером измерений и теоремой о запрете клонирования. Представим разнесённых в пространстве наблюдателей А и Б, у которых имеется по экземпляру квантово-запутанных ящиков с котами Шрёдингера, находящимися в суперпозиции «жив-мёртв». Если в момент t1 наблюдатель А открывает ящик, то его кот равновероятно оказывается либо живым, либо мёртвым. Если живым, то в момент t2 наблюдатель Б открывает свой ящик и находит там мёртвого кота. Проблема в том, что до исходного измерения нет возможности предсказать, у кого именно что окажется, а после один кот жив, другой мёртв, и назад ситуацию не повернуть.
Слабые квантовые измерения позволяют вовремя остановить «убийство» кота Шрёдингера и оставить его в исходной суперпозиции «жив-мёртв».
Обход классических ограничений был найден в 2006 году Коротковым и Джорданом из Калифорнийского университета за счёт слабых квантовых измерений (англ. weak quantum measurement). Продолжая аналогию, оказалось, что можно не распахивать ящик, а лишь чуть-чуть приподнять его крышку и подсмотреть в щёлку. Если состояние кота неудовлетворительно, то крышку можно сразу захлопнуть и попробовать ещё раз. В 2008 году другая группа исследователей из Калифорнийского университета объявила об успешной экспериментальной проверке данной теории. «Реинкарнация» кота Шрёдингера стала возможной. Наблюдатель А теперь может приоткрывать и закрывать крышку ящика, пока не убедится, что у наблюдателя Б кот окажется в нужном состоянии.
Открытие возможности «обратного коллапса» во многом перевернуло представления о базовых принципах квантовой механики:
Профессор Влатко Ведрал, Оксфордский университет: «Теперь мы даже не можем сказать, что измерения формируют реальность, — ведь можно элиминировать эффекты замеров и начать всё заново». Профессор Шлоссхауэр, университет Мельбурна: «Квантовый мир стал ещё более хрупким, а реальность ещё более таинственной».
—
Возникла идея не просто передачи потоков запутанных частиц в разнесённые в пространстве приёмники, но и хранения таких частиц неопределённо долгое время в приёмниках в состоянии суперпозиции для «последующего использования». Ещё из работ Раньяды 1990 года было известно о таких расслоениях Хопфа, которые могли быть топологическими решениями уравнений Максвелла. В переводе на обычный язык это означало, что математически могут существовать ситуации, при которых пучок фотонов или отдельный фотон будет бесконечно циркулировать по сложной замкнутой траектории, выписывая тор в пространстве. До недавнего времени это оставалось просто ещё одной математической абстракцией. В 2008 году американские исследователи занялись анализом получаемых расслоений и их возможной физической реализацией. В результате были найдены стабильные решения и технические способы, позволяющие реализовать такие решения. Оказалось, что пучок света действительно можно «свернуть в бублик» (точнее — в замкнутый тороидальный узел) и «положить на место», и такое состояние останется стабильным и самоподдерживающимся. На сентябрь 2011 об успешных лабораторных реализациях не сообщалось, но теперь это вопрос технических трудностей, а не физических ограничений.
Помимо проблемы «складирования» запутанных частиц остаётся нерешённой проблема декогеренции, то есть утраты частицами запутанности со временем из-за взаимодействия с окружающей средой. Даже в физическом вакууме остаются так называемые виртуальные частицы. Несмотря на эпитет «виртуальный» в названии, они вполне успешно деформируют физические тела, как показывает эффект Казимира, следовательно, теоретически могут влиять на запутанные частицы.
