- •Методика викладання математики в початкових класах
- •1.Завдання вивчення розділу нумерації цілих невід’ємних чисел.
- •2. Різні підходи до трактування цілих невід’ємних чисел та нуля в початковому курсі математики. Натуральний ряд чисел. Особливості десяткової системи числення.
- •3. Тмо побудови дочислового періоду.
- •4.Тмо вивчення цілих невід’ємних чисел в концентрі «Десяток».
- •5.Тмо вивчення нумерації цілих невід’ємних чисел в концентрі «Сотня».
- •5.1. Тмо вивчення нумерації цілих невід’ємних чисел11-20.
- •5.2. Тмо вивчення чисел 21-100(2 клас).
- •6. Тмо вивчення нумерації цілих невід’ємних чисел в концентрі «Тисяча».
- •7. Тмо вивчення нумерації багатоцифрових чисел.
- •1.Теоретико-методичні основи початкового ознайомлення молодших школярів з діями додавання і віднімання
- •Додавання і віднімання
- •Способи читання прикладу:
- •Способи читання
- •Малюнок 1.
- •2.Теоретико-методичні основи вивчення табличних випадків додавання і віднімання у межах ста.
- •Малюнок № 2.
- •3.Тмо вивчення усних прийомів додавання і віднімання двоцифрових чисел
- •2) Випадки додавання і віднімання круглих чисел.
- •5) Випадки віднімання виду 57-34.
- •Лекція № Змістовний модуль 3.2. (зм32) Теоретико-методичні основи вивчення додавання т віднімання багатоцифрових чисел
- •1. Теоретико-методичні основи вивчення додавання і віднімання цілих невід’ємних чисел у концентрі «Тисяча»
- •8) Випадки віднімання виду 860-250.
- •10) Випадки віднімання виду 200-60.
- •13) Випадки віднімання виду 650-290 і 600-270.
- •2. Теоретико-методичні основи вивчення усних прийомів обчислень у концентрі «Багатоцифрові числа”
- •3. Теоретико-методичні основи вивчення письмових прийомів додавання і віднімання в концентрі «Багатоцифрові числа»
- •1.Теоретико-методичні основи початкового ознайомлення школярів з діями множення і ділення
- •2.Теоретико-методичні основи розгляду табличних випадків множення і ділення.
- •3.Теоретико-методичні основи вивчення особливих випадків множення і ділення з числами 0, 1, 10
- •Теоретико-методичні основи розгляду позатабличних випадків множення і ділення у концентрі «Сотня» («Тисяча»).
- •Теоретико-методичні основи вивчення ділення з остачею.
- •Теоретико-методичні основи вивчення письмових прийомів множення і ділення в концентрі «Тисяча».
- •Теоретико-методичні основи вивчення письмових прийомів множення і ділення багатоцифрових чисел.
- •1. Загальні теоретико-методичні основи формування понять про величини, що вивчаються в курсі математики і-іv класів (довжина, площа, маса, місткість, час, швидкість, ціна, вартість, тощо)
- •2.Теоретико-методичні основи ознайомлення з довжиною, способів її вимірювання, одиниць вимірювання та співвідношень між ними
- •3.Теоретико-методичні основи формування уявлень про площу, способи її вимірювання, одиниці вимірювання та співвідношення між ними
- •4.Теоретико-методичні основи вивчення маси та місткості, способів їх вимірювання, одиниць вимірювання та співвідношень між ними. Дії над іменованими числами, вираженими мірами маси
- •5. Теоретико-методичні основи формування уявлень про ціну та вартість. Вивчення взаємозв’язку між ціною, кількістю та вартістю
- •6.Теоретико-методичні основи вивчення часу. Методика ознайомлення з одиницями вимірювання часу. Дії над іменованими числами, вираженими мірами часу
- •7.Теоретико-методичні основи вивчення взаємозв'язків між пропорційними величинами
- •1. Теоретично–методичні основи вивчення алгебраїчного матеріалу в курсі математики початкових класів
- •2. Теоретично–методичні основи вивчення з молодшими школярами числових виразів і виразів, що містять змінну
- •3. Теоретико-методичні основи вивчення числових рівностей та нерівностей
- •4. Теоретико-методичні основи вивчення нерівностей, що містять змінну
- •5. Теоретико-методичні основи вивчення рівнянь
- •Найпростіші рівняння:
- •Складені рівняння:
- •6. Теоретично–методичні основи формування уявлень учнів про функціональну залежність
- •Теоретико – методичні основи вивчення геометричного матеріалу в курсі математики і-іv-х класів
- •2. Теоретико–методичні основи ознайомлення учнів з найпростішими геометричними фігурами та їх властивостями
- •3. Методика навчання учнів елементарним геометричним побудовам. Позначення фігур
- •Малюнок 3.
- •М алюнок 4.
- •4. Теоретично–методичні основи розвитку просторових уявлень та уяви учнів
- •5. Теоретико–методичні основи навчання учнів розв’язувати задачі на розпізнавання геометричних фігур, поділ їх на частини та складання фігур із заданих частин
- •6. Методика навчання учнів розв’язувати задачі на обчислення периметра та площі геометричних фігур
- •Малюнок 5.
- •7. Теоретико-методичні основи вивчення дробів: а) теоретико-методичні основи ознайомлення з частинами
- •Малюнок № 9.
- •Малюнок № 10. Б) теоретико-методичні основи вивчення дробів
- •2.Теоретико-методичні основи загальних прийомів роботи над текстовими задачами з молодшими школярами
- •2 Етап – аналіз задачі.
- •3 Етап – складання плану.
- •4 Етап – запис розв’язання задачі.
- •5 Етап – робота над розв’язаною задачею.
- •3. Теоретико-методичні основи підготовчої роботи до ознайомлення з першою простою текстовою задачею
- •4.Теоретико-методичні основи ознайомлення учнів з першою простою текстовою задачею
- •5. Теоретико-методичні основи підготовчої роботи до введення перших простих текстових задач на додавання, віднімання, множення та ділення
- •1. Теоретико-методичні основи підготовчої роботи до задач на розкриття конкретного змісту дії додавання та віднімання.
- •6.Теоретико-методичні основи навчання учнів розв'язувати прості задачі на додавання і віднімання Прості задачі, які розв’язуються дією додавання
- •Прості задачі, які розв’язуються дією віднімання
- •7. Теоретико-методичні основи навчання учнів розв'язувати прості задачі на множення та ділення Прості задачі, які розв’язуються дію множення
- •1.Система складених текстових задач курсу математики початкових класів
- •2. Типові складені задачі:
- •3. З типовим конкретним змістом та сюжетом:
- •4. Задачі з логічним навантаженням.
- •2. Теоретико-методичні основи підготовчої роботи до введення першої текстової складеної задачі
- •3. Теоретико-методичні основи введення першої текстової складеної задачі. Різні методичні підходи до розв’язання цього питання
- •1 Етап роботи над задачею - ознайомлення з умовою та усвідомлення змісту.
- •3 Етап - складання плану розв’язування задачі.
- •4 Етап – запис розв’язання задачі.
- •5 Етап – робота над розв’язаною задачею.
- •4.Теоретико-методичні основи розвитку уявлень учнів про складену текстову задачу та процес її розв’язування. Розвиток умінь учнів розв'язувати складені текстові задачі
- •Малюнок 1.
- •Малюнок 2.
- •Малюнок 3.
- •Пам’ятка «Як працювати над задачею»
- •1. Типова складена задача, на знаходження четвертого пропорційного Підготовча робота
- •2. Типова складена задача на пропорційний поділ
- •Синтетичний спосіб:
- •План розв’язання
- •Творча робота над задачею
- •3. Типова складена задача на знаходження невідомого за двома різницями Підготовча робота
- •Синтетичний спосіб:
- •План розв’язання
- •Творча робота над задачею
- •4. Типова складена задача на знаходження середнього арифметичного Підготовча робота
- •Синтетичний спосіб:
- •Розв’язання
- •5.Типова складена задача на складне правило трьох (ускладнена задача на знаходження четвертого пропорційного , на подвійне зведення до одиниці) Підготовча робота
- •Синтетичний спосіб:
- •Синтетичний спосіб:
- •6. Теоретико-методичні основи навчання учнів розв'язувати задачі з типовим конкретним змістом та сюжетом
- •1. Задачі з типовим конкретним змістом та сюжетом на рух Підготовча робота
- •1.1. На зустрічний рух
- •Синтетичний спосіб:
- •Розв’язання
- •1.2. На рух в протилежних напрямках
- •Синтетичний спосіб:
- •Розв’язання
- •1.3. На рух навздогін
- •2. Задачі з типовим конкретним змістом та сюжетом пов’язані з часом Підготовча робота
- •2.1. На знаходження тривалості події, коли відомо час початку і час закінчення події
- •2.2. На визначення початку події, коли відомо її тривалість і час закінчення
- •2.3. На визначення часу закінчення події, коли відомо тривалість і час початку
- •Синтетичний спосіб:
- •3. Задачі з типовим конкретним змістом і сюжетом із геометричним змістом
- •Аналітичний спосіб:
- •План розв’язання
- •Аналітичний спосіб:
- •План розв’язання
- •4. З типовим конкретним змістом і сюжетом пов’язанні із дробами Підготовча робота
- •Розв’язання
- •7. Теоретико-методичні основи навчання учнів розв'язувати задачі з логічним навантаженням
3 Етап – складання плану.
Найпоширенішим недоліком є те, що план розв’язання не виділяється в окремий етап, а складається під час аналізу задачі. Для того, щоб не допускати таких помилок, які створюють додаткові труднощі для учнів, вчитель повинен на цьому етапі роботу проводити приблизно так: що будемо визначати у першій дії? Як це будемо робити? Що будемо визначати у другій дії? тощо, залежно від кількості дій, які слід виконати, щоб отримати відповідь на запитання задачі. Важливо, щоб відповіді дітей на поставлені вчителем запитання були повними та не містили числових даних.
- Що будемо визначати у першій дії? – Кількість яблук у Наталки.
- Як це будемо робити? – Від кількості яблук Миколки віднімемо ту кількість яблук, на скільки їх у Наталки було менше.
- Що будемо визначати у другій дії? – Скільки всього яблук у дітей.
- Як це будемо робити? – До кількості яблук, які у Миколи додамо кількість яблук, які у Наталки.
4 Етап – запис розв’язання задачі.
В курсі математики початкових класів існують арифметичний і алгебраїчний способи запису розв’язання текстових задач. Серед арифметичних способів виділяють принаймні чотири: 1) запис розв’язання задачі за діями; 2) запис розв’язання задачі за діями з коротким поясненням; 3) запис розв’язання задачі виразом; 4) запис розв’язання задачі за діями з запитаннями. Кожний із названих арифметичних способів представлено для задачі «У Миколи було 5яблук, а у Наталки на 3 більше. Скільки всього яблук було у дітей?» у таблиці № 4.
Таблиця № 4.
І спосіб |
ІІ спосіб |
ІІІ спосіб |
ІУ спосіб |
1) 5-3=2 (ябл.) 2) 5+2=7 (ябл.) Відповідь: 7 яблук було у дітей. |
1) 5-3=2 (ябл.) – було у Наталки; 2) 5+2=7 (ябл.) Відповідь:7 яблук було у дітей. |
5+(5-3)=7(ябл.) Відповідь:7 яблук було у дітей. |
1) Скільки яблук було у Наталки? 5-3=2 (ябл.) 2) Скільки всього яблук було у дітей? 5+2=7 (ябл.). Відповідь:7 яблук було у дітей. |
Алгебраїчний спосіб запису розв’язання задачі: за допомогою рівняння. Наприклад, для попередньої задачі розв’язання за допомогою рівняння можна записати: х=5+(5-3).
5 Етап – робота над розв’язаною задачею.
Формуванню загального уміння розв'язувати задачу сприяють різноманітні форми роботи над розв’язаною задачею. Вона може включати: 1) обговорення виконаного розв’язання (чому задача розв’язувалася дією додавання?, Чому ми зуміли відповісти на запитання задачі?); 2) перевірку розв’язання задачі; 3) складання та розв’язання задачі різними способами (якщо це можливо); 4) складання та розв’язання обернених задач з наступним порівнянням з даною задачею; 5) складання та розв’язання аналогічних задач – задачі, які мають однакову математичну структуру, замінюються дані, зміст (наприклад. В одному кошику було 8 груш, а в другому – на 3 груші більше. Скільки всього груш у кошиках?); 6) складання та розв’язання подібних задач – задачі, які мають різні математичні структури, але схожі за сюжетом, числовими даними (наприклад. У Миколи 5 яблук, це на 3 яблука більше, ніж у Наталки. Скільки всього яблук у дітей?); 7) перетворення заданих задач у задачі споріднених їм видів – до задач споріднених видів належать задачі, в яких величини пов’язані однаковою залежністю (наприклад. Задачі на знаходження четвертого пропорційного, на пропорційне ділення і знаходження невідомого за двома різницями).
