Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Statistika_reshenie (1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
27.04 Кб
Скачать

Решение:

Таблица для расчета показателей

Группы

Середина интервала, xi

Кол-во, fi

xi * fi

Накопленная частота, S

|x - xср|*f

(x - xср)2*f

Частота, fi/n

1.4 - 2.0

1.7

12

20.4

12

20.14

33.8

0.087

2.0 - 2.6

2.3

18

41.4

30

19.41

20.93

0.13

2.6 - 3.2

2.9

24

69.6

54

11.48

5.49

0.17

3.2 - 3.8

3.5

36

126

90

4.38

0.53

0.26

3.8 - 4.4

4.1

28

114.8

118

20.21

14.59

0.2

4.4 - 5.0

4.7

20

94

138

26.43

34.94

0.14

Итого

138

466.2

102.05

110.27

1

Для оценки ряда распределения найдем следующие показатели:

Средняя взвешенная

Мода.

Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

где x0 – начало модального интервала; h – величина интервала; f2 –частота, соответствующая модальному интервалу; f1 – предмодальная частота; f3 – послемодальная частота.

Выбираем в качестве начала интервала 3.2, так как именно на этот интервал приходится наибольшее количество.

Наиболее часто встречающееся значение ряда – 3.56

Медиана.

Медиана делит выборку на две части: половина вариант меньше медианы, половина — больше.

В интервальном ряду распределения сразу можно указать только интервал, в котором будут находиться мода или медиана. Медиана соответствует варианту, стоящему в середине ранжированного ряда. Медианным является интервал 3.2 - 3.8, т.к. в этом интервале накопленная частота S, больше медианного номера (медианным называется первый интервал, накопленная частота S которого превышает половину общей суммы частот).

Таким образом, 50% единиц совокупности будут меньше по величине 3.45.

Абсолютные показатели вариации.

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = Xmax - Xmin

R = 4.4 - 1.4 = 3

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 0.74

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 3.38 в среднем на 0.89

К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v ≤ 30%, то совокупность однородна, а вариация слабая. Полученным результатам можно доверять.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Задача 5. По данным задач 3 и 4 вычислить средний объем выпускаемой продукции во всей генеральной совокупности предприятий, состоящей из 1500 предприятий. Расчеты провести с вероятностью 0,954.

Задача 6. Имеются следующие данные о численности населения города по состоянию на 1 января каждого года:

Таблица 7.4.4

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]