- •Волновая оптика интерференция
- •Оглавление
- •Краткая теория Введение. Электромагнитная природа света
- •1. Интерференция. Условие минимума и максимума интенсивности
- •2. Опыт юнга. Расчёт интерфернционной картины от двух щелей
- •2.1. Ширина интерференционной полосы
- •2.2. Распределение интенсивности
- •3. Когерентность
- •3.1. Временная когерентность. Длина когерентности
- •3.2. Пространственная когерентность. Ширина когерентности
- •4. Полосы равного наклона
- •5. Полосы равной толщины
- •5.1. Кольца Ньютона
- •6. Интерферометры и интерферометрия
- •7. Основной принцип интерференционных схем
- •Экспериментальная часть
- •1. Лабораторная работа № 3-1а определение длины волны света с помощью устройства юнга
- •Методика эксперимента
- •Порядок выполнения работы
- •Задание 1.
- •Задание 2.
- •Контрольные вопросы
- •2. Лабораторная работа № 3-1м Интерференция света на двух щелях
- •Порядок выполнения работы
- •Задание 1.
- •Задание 2
- •Задание 3.
- •Контрольные вопросы
- •3. Лабораторная работа № 3-2к кольца ньютона
- •Методика эксперимента
- •Порядок выполнения работы
- •Задание 1.
- •Для любознательных и продвинутых
- •Задание 2. Определение длины и времени когерентности
- •Контрольные вопросы
- •4. Лабораторная работа № 3-2м кольца ньютона
- •Методика эксперимента
- •Порядок выполнения работы
- •Задание 1. Определение радиусов окрашенных колец Ньютона
- •Задание 2. Определение длины и времени когерентности
- •Контрольные вопросы
- •5. Лабораторная работа № 3-10 интерференция при отражении плоской волны
- •Методика эксперимента
- •Порядок выполнения работы
- •Задание 1.
- •Контрольные вопросы
- •6. Лабораторная работа № 3-11 полосы равного наклона
- •Порядок выполнения работы
- •Задание 1.
- •Контрольные вопросы
- •7. Лабораторная работа № 3-13 интерферометр маха-цендера
- •Методика эксперимента
- •Порядок выполнения работы
- •Задание 1.
- •Контрольные вопросы
- •8. Лабораторная работа № 3-14 опредение показателя преломления пластины
- •Методика эксперимента
- •Порядок выполнения работы
- •Задание 1.
- •Контрольные вопросы
- •9. Лабораторная работа № 3-15 определение показатеЛя преломления воздуха
- •Методика эксперимента
- •Порядок выполнения работы
- •Задание 1.
- •Контрольные вопросы
- •10. Лабораторная работа № 3-30 изучение интерференции света от двух щелей
- •Методика эксперимента
- •Порядок выполнения работы
- •Задание 1.
- •Контрольные вопросы
- •Литература
- •Приложение 1. Микроскоп мбс-1
- •4.1.1.Столик
- •Приложение 2. Микроскоп люминесцентный мл-2
- •Приложение 3.
- •Приложение 4. Микроскоп металлографический «метам рв-21-1»
- •Приложение 5. Краткое описание модульного учебного комплекса мук-о (по оптике)
- •1. Назначение
- •2. Технические данные
- •3. Устройство и принцип работы блоков комплекса
- •3.1. Принцип работы оптического блока
- •4. Подготовка комплекса к работе
- •Порядок выключения комплекса
- •Приложение 6. Итерферррометр Маха-Цендера
- •Приложение 7 Модульный учебный комплекс лко-1 Техническое описание
- •2. Технические условия
- •3. Состав изделия
- •Набор объектов
- •4. Устройство и принцип работы
- •5. Методические указания к применению
- •5.1. Методика настройки и измерений Настройка установки
- •Грубая юстировка
- •Точная юстировка
- •Измерение продольных координат и расстояний
- •Калибровка микропроектора
- •Поперечные размеры и расстояния
- •Распределение интенсивности
- •Внимание!
- •Приложение 8. Описание учебно-демонстрационного тест-объекта мол-01-1
- •690059, Владивосток, ул. Верхнепортовая, 50а
Порядок выполнения работы
Перед началом выполнения работы необходимо ознакомиться с теорией интерференции, с описанием комплекса ЛКО-1 и модулей, используемых в настоящей работе (см. Приложение № 7), инструкцией по эксплуатации комплекса ЛКО-1 и инструкцией по технике безопасности при работе с лазерными источниками света.
Задание 1.
1. Соберите схему согласно рис. 38 (Л1 вмонтирована в модуль 5). Установите пластину (объект 5 рис.18) на поворотном столике (модуль 13).
Рис.18. ОБЪЕКТ 5 - плоскопараллельная стеклянная пластина толщиной 4-8 мм. Точное значение толщины указывается в паспорте установки или определяется студентом самостоятельно. Пластина 1 смонтирована на кронштейне 2.
Ближайшая
к экрану поверхность пластины находится
на расстоянии
мм.
от средней плоскости экрана Э (это
расстояние потребуется при расчётах
оптических явлений).
2. Ручкой поворота 1 и винтом наклона 6 столика модуля 13 (рис.14 в приложении №7) установите светлое пятно отражённого лазерного излучения в центре экрана Э модуля 5.
3. Перемещая пластину вдоль оптической скамьи, наблюдайте изменение радиусов интерференционных колец на экране. Подберите значение , удобное для измерений.
4. Измерьте радиусы всех видимых на экране тёмных колец (не менее пяти). Для измерения каждого радиуса сделайте 4 отсчета по шкалам экрана (сверху, снизу, справа и слева от центра экрана). Усредните радиусы колец и данные занесите в таблицу.
Таблица 1
-
1
2
3
4
5
5.
Постройте график зависимости
.
Для построения графика можно использовать
компьютерные программы «Excel»
или «Grapher
2».
6. Найдите угловой коэффициент графика (тангенс угла наклона графика к оси ).
7. Используя формулу (49), определите показатель преломления пластины. Значения толщины пластины и длины волны приведены в паспорте установки. При определении нужно учесть конструкцию объекта 5 (рис.18) и по положению риски столика найти положение отражающих поверхностей пластины.
Контрольные вопросы
1.Что такое интерференция света? Какие волны называются когерентными? Как можно получит когерентные световые волны?
2. Что понимают под геометрической и оптической разностью волн?
3. Сформулируйте и выведите условия интерференционных минимумов и максимумов.
4. Нарисуйте схему наблюдения интерференционных полос равного наклона (или цвета тонких плёнок).
5.
Почему полосы равного наклона в данном
эксперименте наблюдаются на достаточно
толстой стеклянной пластине (
мм.)?
6. Дайте объяснения понятиям длины временной и пространственной когерентности. Какими параметрами определяется длина временной и пространственной когерентности?
