- •1.Механическое движение как простейшая форма движения материи. Преставления о формах пространства и времени, лежащие в основе классической механики. Границы применимости классической механики.
- •2. Элементы кинематики материальной точки. Скорость и ускорение точки, как производные радиуса вектора по времени.
- •Кинематические уравнения движения
- •3) Нормальное и тангенциальное ускорения. Радиус кривизны траектории.
- •4.Элементы кинематики вращательного движения. Угловая скорость и угловое ускорение их связь с линейными скоростями и ускорениями точек вращающегося тела.
- •5. Динамика материальной точки и поступательного движения твёрдого тела. Сила. Закон инерции и инерциальные системы отсчета. Закон динамики материальной точки (2 и 3 законы Ньютона)
- •7.Работа консервативных и неконсервативных сил. Определение работы через интеграл, графически и через изменение энергии.
- •8. Кинетическая и потенциальные энергии. Понятие о градиенте потенциала. Закон сохранения механической энергии. Диссипация энергии. Консервативные и неконсервативные силы.
- •9. Поле как форма материи, осуществляющая силовое взаимодействие между частицами вещества. Вес и невесомость. Потенциальная энергия тяготения.
- •10. Применение законов сохранения к абсолютно неупругому удару. Энергия идущая на деформацию. Примеры неупругого удара.
- •11. Применение законов сохранения к абсолютно упругому удару. Частные случаи и их конкретные проявления.
- •12. Динамика вращательного движения абсолютно твердого тела. Момент силы. Основной закон вращательного движения. Момент инерции.
- •13.Момент инерции. Зависимость момента инерции твердого тела от его характеристик. Теорема Штейнера и ее применение на конкретном примере
- •14. Кинетическая энергия вращательного движения. Закон сохранения момента импульса и его проявление.
- •15. Неинерциальные системы отсчета. Силы инерции в поступательно движущейся неинерциальной системе. Эквивалентность сил инерции и гравитационных сил.
- •16. Силы инерции во вращающейся системе отсчета и их применение. Сила Кориолиса.
- •17. Преобразование координат Галилея. Механический принцип относительности. Закон сложения скоростей. Инварианты преобразования.
- •18. Постулаты специальной теории относительности. Преобразования Лоренца. Относительность одновременности.
- •20. Элементы релятивистской динамики. Закон взаимодействия массы и энергии. Изменение массы тела со скоростью. Границы применимости классической механики.
- •Релятивистский импульс
- •Закон взаимосвязи массы и энергии
- •Изменение массы тела со скоростью
- •Закон сложения скоростей
- •21) Термодинамический и молекулярно-кинетический методы исследования. Термодинамические параметры. Равновесные состояния и процессы, и их изображение на термодинамической диаграмме.
- •23. Число степеней свободы молекул. Закон равномерного распределения энергии по степеням свободы молекул. Внутренняя энергия идеального газа.
- •24) Работа газа при изменении его объема. Количество теплоты. Теплоемкость.
- •25.Первое начало термодинамики и применение его к изопроцессам. Работа в изопроцессах.
- •26. Применение первого начала термодинамики к адиабатному процессу. Уравнение Пуассона. Работа газа в адиабатном процессе.
- •27) Теплоемкость. Зависимость теплоемкости идеального газа от вида процесса. Свободная и связанная энергия.
- •28.Закон Максвелла для распределения молекул идеального газа по скоростям. Наиболее вероятная квадратичная и средняя арифметическая скорости молекул. Опытное подтверждение.
- •Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •30) Среднее число столкновений и средняя длина свободного пробега молекул.
- •31.Явления переноса в термодинамически неравновестных системах. Коэффициент диффузии
- •32. Опытные законы теплопроводности и внутреннего трения. Коэффициенты теплопроводности и внутреннего трения
- •33) Обратимые и необратимые процессы. Круговые процессы (циклы) и их изображение на термодинамической диаграмме. Принцип Томпсона. Тепловые двигатели и холодильные машины.
- •34.Принцип Томсона. Цикл Карно и его кпд, работа за цикл. Ход цикла Карно в термодинамической диаграмме.
- •35.Второе начало термодинамики. Молекулярно-кинетическая картина равновесных состояний. Энтропия идеального газа.
- •36) Отступление от законов идеальных газов. Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Эффективный диаметр молекул.
- •37.Уравнение Ван-дер-Вальса
- •38.Сравнение изотерм Ван-дер-Ваальса с экспериментальными. Критическое состояние.
- •39) Фазовые переходы I и II рода. Уравнение Клапейрона-Клаузиуса.
18. Постулаты специальной теории относительности. Преобразования Лоренца. Относительность одновременности.
Постулаты СТО.
Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (υ << c). В нерелятивистской физике принималось как очевидный факт существование единого мирового времени t, одинакового во всех системах отсчета. В основе классической механики лежит механический принцип относительности (или принцип относительности Галилея): законы динамики одинаковы во всех инерциальных системах отсчета. Этот принцип означает, что законы динамики инвариантны (т. е. неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (K), если заданы координаты этого тела в другой инерциальной системе (K').
Итак, на рубеже XIX и XX веков физика переживала глубокий кризис. Выход был найден Эйнштейном ценой отказа от классических представлений о пространстве и времени. Наиболее важным шагом на этом пути явился пересмотр используемого в классической физике понятия абсолютного времени. Классические представления, кажущиеся наглядными и очевидными, в действительности оказались несостоятельными. Многие понятия и величины, которые в нерелятивистской физике считались абсолютными, т. е. не зависящими от системы отсчета, в эйнштейновской теории относительности переведены в разряд относительных.
Так как все физические явления происходят в пространстве и во времени, новая концепция пространственно-временных закономерностей не могла не затронуть в итоге всю физику.
В основе специальной теории относительности лежат два принципа или постулата, сформулированные Эйнштейном в 1905 г.
Принцип относительности: все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна.
Принцип постоянства скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.
Эти принципы следует рассматривать как обобщение всей совокупности опытных фактов. Следствия из теории, созданной на основе этих принципов, подтверждались бесконечными опытными проверками. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.
Преобразования Лоренца.
Классические преобразования Галилея несовместимы с постулатами СТО и, следовательно, должны быть заменены. Эти новые преобразования должны установить связь между координатами (x, y, z) и моментом времени t события, наблюдаемого в системе отсчета K, и координатами (x', y', z') и моментом времени t' этого же события, наблюдаемого в системе отсчета K'.
Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K' движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид:
|
Относительность одновременности.
Два любых события в точках А и В, одновременные в системе К1 не одновременны в системе К. Но в силу принципа относительности системы К1 и К совершенно равноправны. Ни одной из этих систем нельзя отдать предпочтение. Поэтому мы вынуждены прийти к заключению, что одновременность пространственно разделенных событий относительна. Причиной относительности одновременности является, как мы видим, конечность скорости распространения сигналов.
19

β = υ / c.