- •«Оренбургский государственный университет»
- •Лабораторный практикум по курсу «методы и средства измерений, испытаний и контроля»
- •Часть 2
- •Содержание
- •8 Лабораторная работа № 24 Измерение расхода - дифференциальным манометром................................................................................................................183
- •17 Лабораторная работа № 32Датчик Метран ............................................................436
- •Введение
- •1 Раздел 3. Измерение теплоты
- •1.1 Лабораторное оборудование кафедры мСиС для раздела 3
- •2 Лабораторная работа № 19 Регулятор «Метакон»
- •2.1 Назначение. Область применения. Условия эксплуатации.
- •2.2 Устройство
- •2.3 Термоэлектрические преобразователи температуры (термопары)
- •Термометры сопротивления (терморезисторы)
- •2.5 Метрологические характеристики датчиков температуры
- •2.6 Метрологические характеристики преобразователей типа Метакон
- •2.7 Рекомендации потребителю
- •2.8 Как правильно измерить температуру
- •2.9 Указание мер безопасности
- •2.10 Пример отчета по лабораторной работе
- •2.11 Варианты и исходные данные для выполнения лабораторной работы
- •2.12 Вопросы для самоконтроля
- •3Лабораторная работа № 20 Поверка теплотехнических величин
- •3.1 Поверка средств измерений
- •3.2 Измерения теплотехнических величин
- •3.3 Поверка температуры
- •Потенциометры автоматические следящего уравновешивания ксп2
- •3.5 Приборы для поверки теплотехнических величин
- •3.5.1 Термостаты Термотест 300 / 100 для поверки и калибровки термометров при высоких и низких температурах
- •3.6 Приборы для поверки давления
- •3.7 Приборы для поверки расхода и количества вещества
- •3.8 Проливная установка
- •Заключение
- •4 Лабораторная работа № 21 Дилатометрические термометры
- •4.1 Виды термометров
- •4.1.4 Дилатометрические термометры
- •4.3 Устройства терморегулирующие дилатометрические электрические тудэ м1
- •4.9 Пример отчета по лабораторной работе
- •Варианты и исходные данные для выполнения лабораторной работы
- •5 Лабораторная работа № 22 Термометры стеклянные ртутные
- •5.1 Основные сведения о термометрии
- •5.2 Стеклянные жидкостные термометры
- •5.3 Обозначения типов термометров
- •5.4 Метрологические характеристики стеклянных жидкостных термометров. Пределы допускаемых погрешностей, учет погрешностей, введение поправок в показание термометров
- •5.5 Современный типаж термометров распространённых в применении
- •6 Лабораторная работа № 23 Термометры и преобразователи
- •6.1 Манометрические термометры
- •6. 2 Манометрические, жидкостные термометры
- •6. 3 Основные параметры и размеры
- •6.3.2 Технические требования
- •6.4 Ремонт манометрических термометров
- •6. 5 Монтаж манометрических термометров
- •6.6 Эксплуатация и наладка манометрических термометров
- •6. 7 Поверка манометрического термометра
- •Заключение
- •7 Раздел 4. Измерение расхода
- •7.1 Основные понятия и положения
- •7.2 Расход жидкости. Основные понятия
- •7.3 Расходомеры. Общая классификация.
- •7.4 Техника измерения расхода
- •8 Лабораторная работа № 24 Измерение расхода –
- •8.1 Измерение расхода и количества вещества
- •8.2 Сужающие устройства
- •8.3 Метод определения расхода
- •8.4 Общие требования к условиям измерений
- •8.5 Установка стандартных сужающих устройств
- •8.6 Диафрагмы
- •8.7 Проведение поверки сужающих устройств
- •8.8 Оформление результатов проверки измерительных комплексов и поверки сужающих устройств
- •8.9 Дифманометры
- •8.10 Выбор прибора для поверки дифманометра
- •9 Лабораторная работа № 25 Ареометры
- •9.1 Стеклянные ареометры
- •9.2 Металлические спиртомеры
- •9.3 Поверка ареометров
- •9.4 Технические требования
- •10 Лабораторная работа № 26 Фотометр фотоэлектрический кфк – 3
- •10.1 Описание
- •10.2 Устройство и работа фотометра
- •10.3 Устройство и работа составных частей фотометра
- •10.4 Принадлежности и сменные части
- •10.5 Маркирование и упаковка
- •10.6 Указания и условия работы фотометра
- •10.7 Порядок работы
- •10.8 Проверка технического состояния
- •10.9 Возможные неисправности и способы их устранения
- •10.10 Техническое обслуживание
- •10.11 Поверка фотометра кфк - 3
- •11 Лабораторная работа № 27 Ротаметры
- •11.1 Принцип действия
- •11.2 Типы и основные параметры
- •11.3 Ротаметры стеклянные
- •11.4 Металлические ротаметры
- •11.5 Ротаметры электрические
- •11.6 Теоретические основы измерения расхода при помощи ротаметров
- •11.7 Технические требования
- •11.8 Правила приёмки
- •11.9 Методы испытаний
- •11.10 Маркировка, упаковка, транспортирование и хранение
- •11.11 Поверка
- •12 Лабораторная работа № 28 Реометры
- •12.1 Типы и основные параметры
- •12.2 Реометры стеклянные
- •12.3 Технические требования
- •12.4 Правила приёмки
- •12.5 Методы испытания
- •12.6 Маркировка, упаковка, транспортирование и хранение
- •12.7 Градуировка реометров
- •12.8 Поверка
- •13 Раздел 5. Измерение давления
- •14 Лабораторная работа № 29 Манометр с пневматическим преобразователем типа мс-п системы гсп
- •14.1 Цель работы
- •14.2 Общие сведения по измерению давления
- •14.3 Принцип действия и устройство манометра системы гсп типа мс-п
- •14.4 Устройство и работа бесшкального датчика давления типа мс-п системы гсп
- •14.5 Пример отчета по лабораторной работе
- •14.6 Варианты и исходные данные для выполнения лабораторной работы:
- •14.7 Вопросы для самоконтроля
- •15 Лабораторная работа № 30 Поверка манометра типа мэд Введение
- •15.1 Цель работы
- •15.2 Классификация манометров
- •15.3 Общие сведения о манометре мэд
- •15.4 Поверка манометра мэд в комплекте с вторичным прибором эпид
- •15.5 Пример отчета по лабораторной работе
- •15.5 Варианты и исходные данные для выполнения лабораторной работы:
- •15.6 Вопросы для самоконтроля
- •16 Лабораторная работа № 31Деформационный манометр
- •16.1 Цель работы
- •16.2 Назначение. Вид измерений. Область применения
- •16.3 Устройство. Принцип действия
- •16.4 Методика выбора средств измерений. Объект измерений
- •16.5 Суммарная погрешность, её состав. Диапазон измерения
- •16.6 Шесть основных мероприятий перед началом работы
- •16.7 Установка рабочего положения
- •16.8 Указание по безопасности
- •16.9 Пример отчета по лабораторной работе
- •16.10 Вопросы для самоконтроля
- •16.11 Варианты и исходные данные для выполнения лабораторной работы:
- •17 Лабораторная работа № 32 Датчик Метран
- •17.1 Физическая величина. Единица физической величины
- •17.2 Измерение. Виды измерений
- •17.3 Унификация единиц физических величин. Создание метрических мер
- •17.4 Погрешность измерения
- •17.5 Поверка средств измерений
- •17.6 Задачи и значение поверки
- •17.7 Обеспечение единства измерений в России
- •17.8 Правовые основы обеспечения единства измерений
- •17.9 Описание и работа датчика давления Метран-49
- •17.10 Многофункциональный портативный калибратор Метран 510-пкм
- •По защищенности от воздействия окружающей среды калибратор соответствует исполнению 1р54 по гост 14254 – 96 «Степени защиты, обеспечиваемые оболочками (Код ip)».
- •17.11 Программа Archive
- •18 Лабораторная работа № 33Грузопоршневые манометры
- •18.1 Средства измерения давления. Общие сведения
- •18.2 Классификация измерений (Виды измерений)
- •18.3 Выбор метода измерения
- •18.4 Манометр избыточного давления грузопоршневой мп – 2,5
- •18.5 Уровень установочный
- •18.6 Образцовый грузопоршневой манометр мп-60 класса 0,02
- •18.6.2 Инструкция по эксплуатации
- •18.7 Манометр избыточного давления грузопоршневой мп – 600 класса точности 0,05
- •18.7.4 Указание мер безопасности
- •18.7.5 Подготовка манометра к работе
- •18.8 Методы и средства поверки
- •Список использованных источников
- •17 Маркин, н.С. Метрология. Введение в специальность: учебное пособие для техникумов / н.С. Маркин, в.С. Ершов - м.: Издательство стандартов, 1991. – 208 с.
- •Послесловие к лабораторному практикуму по дисциплине «Методы и средства измерений, испытаний и контроля», охватывающее все 3 части
17.3 Унификация единиц физических величин. Создание метрических мер
Первоначально единицы физических величин выбирались произвольно, без какой-либо связи друг с другом, что создавало большие трудности. Значительное число произвольных единиц одной и той же величины затрудняло сравнение результатов измерений, произведенных различными наблюдателями.
В каждой стране, а иногда даже в каждом городе создавались свои единицы. Перевод одних единиц в другие был очень сложен и приводил к существенному снижению точности результатов измерений.
Помимо указанного разнообразия единиц, которое можно назвать «территориальным», существовало разнообразие единиц, применяемых в различных отраслях науки, техники, промышленности и т. п. В различных отраслях человеческой деятельности создавались новые единицы тех или иных величин, характерных для данной отрасли. Это разнообразие, которое мы называем условно «отраслевым» разнообразием единиц, к сожалению, существует и в настоящее время. По мере развития техники, а также международных связей трудности использования результатов измерений возрастали и тормозили дальнейший научно-технический прогресс. Большой ущерб причиняла множественность единиц в науке. Положение осложнялось еще тем, что соотношения между дольными и кратными единицами были необычайно разнообразны. Можно в качестве примера привести некоторые единицы длины, площади, объема, массы, применявшиеся в России до Октябрьской революции (по состоянию перед их отменой), и соотношения между ними и метрическими мерами:
1 аршин = 16 вершкам = 28 дюймам = 0,7112 м;
1 дюйм = 25,4 мм;
1 сажень = 3 аршинам = 7 футам = 2,1336 мм;
1 фут = 12 дюймам = 304,8 мм;
1 верста = 500 саженям = 1,0668 км;
1 десятина = 2400 кв. саженям = 10925 м2 = (1,0925 га);
1 четверть = 8 четверикам = 209,9 дм3 = (209,9 л);
1 пуд = 40 фунтам = 16,38 кг;
1 фунт = 96 золотникам = 409,5 г;
1 золотник = 96 долям = 4,266 г.
Во второй половине XVIII в. в Европе насчитывалось до сотни футов различной длины, около полусотни различных миль, свыше 120 различных фунтов.
В 1790 г. во Франции было принято решение о создании системы новых мер, «основанных на неизменном прототипе, взятом из природы, с тем, чтобы ее могли принять все нации». Было предложено считать единицей длины длину десятимиллионной части четверти меридиана Земли, проходящего через Париж. Эту единицу назвали метром. Для определения размера метра с 1792 по 1799 гг. были проведены измерения дуги парижского меридиана. За единицу массы была принята масса 0,001 м3 (1 дм3) чистой воды при температуре наибольшей ее плотности (+ 4 °С); эта единица была названа килограммом. При введении метрической системы была не только установлена основная единица длины, взятая из природы, но и принята десятичная система образования кратных и дольных единиц, соответствующая десятичной системе нашего числового счета. Десятичность метрической системы является одним из важнейших ее преимуществ. Однако, как показали последующие измерения, в 1/4 парижского меридиана содержится не 10000000, а 10000856 первоначально определенных метров. Но и это число нельзя было считать окончательным, так как еще более точные измерения могли дать другое значение. Так как при дальнейших более точных измерениях земного меридиана могли получаться другие размеры основной единицы длины, в 1872 г. Международной комиссией по прототипам метрической системы было решено перейти от единиц длины и массы, основанных на естественных эталонах, к единицам, основанным на условных материальных эталонах (прототипах).
В 1875 г. была создана дипломатическая конференция, на которой 17 государств, в том числе и Россия, подписали Метрическую конвенцию. В соответствии с этой конвенцией:
а) устанавливались международные прототипы метра и килограмма;
б) создавалось Международное бюро мер и весов - научное учреждение, средства на содержание которого обязались выделять государства, подписавшие конвенцию;
в) учреждался Международный комитет мер и весов, состоящий из ученых разных стран, одной из функций которого было руководство деятельностью Международного бюро мер и весов;
г) устанавливался созыв один раз в шесть лет Генеральных конференций по мерам и весам.
Были изготовлены образцы метра и килограмма из сплава платины и иридия. Прототип метра представлял собой платиноиридиевую штриховую меру общей длиной 102 см, на расстояниях 1 см от концов которой были нанесены штрихи, определяющие единицу длины - метр.
1889 г. в Париже собралась I Генеральная конференция по мерам и весам, утвердившая международные прототипы из числа вновь изготовленных образцов. Прототипы метра и килограмма были переданы на хранение Международному бюро мер и весов. После установления международных прототипов метра и килограмма Генеральная конференция распределила остальные образцы по жребию между государствами, подписавшими Метрическую конвенцию. Россия получила два метра (№ 11 и 28) и два килограмма (№ 12 и 26). Из них метр № 28 и килограмм № 12 были утверждены в качестве Государственных эталонов России. Таким образом, в 1899 г. было завершено установление метрических мер.
В России вопрос о введении метрических мер в то время не получил окончательного решения. Метрические меры были допущены лишь факультативно. Как обязательные они были введены только при Советской власти декретом Совета Народных Комиссаров РСФСР от 14 сентября 1918 г. Полный переход на метрические меры завершился в 1927 г.
Первоначально были созданы системы единиц, основанные на трех единицах. Эти системы охватывали большой круг величин, условно называемых механическими. Они строились на основе тех единиц физических величин, которые были приняты в той или иной стране. Из всех этих систем предпочтение отдается системам, построенным на единицах длины - массы - времени как основных. Одной из систем, построенных по этой схеме для метрических единиц, является система метр - килограмм - секунда (МКС).
В научных трудах по физике до настоящего времени применяется система сантиметр - грамм - секунда (СГС), разработанная еще в 1861-1870 гг. и построенная по той же схеме: длина - масса - время. Система МКС, а также система СГС в части единиц механических величин когерентны.
В течение некоторого времени применяли так называемую техническую систему единиц, построенную по схеме длина-сила-время. При применении метрических единиц, основными единицами этой системы являются метр - килограмм-сила - секунда (МКГСС). Удобство этой системы заключалось в том, что применение в качестве одной из основных - единицы силы - упрощало вычисления и выводы зависимостей для многих величин, применяемых в технике. Недостатком же ее являлось то, что единица массы в ней получалась производной и численно равной ~9,81 кг, - это нарушает метрический принцип десятичности мер. Второй недостаток - сходность наименования единицы силы - килограмм-сила и метрической единицы массы - килограмма, что часто приводит к путанице. Третьим крупным недостатком системы МКГСС является ее несогласованность с практическими электрическими единицами.
17.3.1 Международная система единиц
Наличие ряда систем единиц измерения физических величин и большое число внесистемных единиц, неудобства, возникающие на практике в связи с пересчетами при переходе от одной системы к другой, вызвали необходимость создания единой универсальной системы единиц, которая охватывала бы все отрасли науки и техники и была бы принята в международном масштабе.
В 1948 г. на IX Генеральной конференции по мерам и весам поступили предложения принять для международных сношений единую практическую систему единиц. В качестве основных единиц рекомендовались: метр, килограмм (единица массы), секунда и одна из электрических единиц.
Исходя из этих предложений, Международным комитетом мер и весов был произведен официальный опрос мнений научных, технических и педагогических кругов всех стран и на основе полученных ответов составлены рекомендации по установлению единой практической системы единиц измерений.
X Генеральная конференция (1954 г.) приняла в качестве основных единиц новой системы следующие: длина - метр; масса - килограмм; время - секунда; сила тока - ампер; температура термодинамическая - градус Кельвина, сила света - кандела.
П р и м е ч а н и е: После X Генеральной конференции Международный комитет мер и весов
подготовил список производных единиц новой системы и предложил назвать ее Международной системой единиц.
В 1960 г. XI Генеральная конференция по мерам и весам окончательно приняла новую систему, присвоив ей наименование Международная система единиц с сокращенным обозначением в русской транскрипции «СИ».
Принятие Международной системы единиц послужило стимулом для перехода на метрические единицы ряда стран, до последнего времени сохранявших национальные единицы (Англия, Канада, США и др.).
В 1963 г. в СССР был введен ГОСТ 9867 – 61 «Международная система единиц», согласно которому СИ была признана предпочтительной. Наряду с этим в СССР действовало восемь государственных стандартов на единицы. В настоящее время в России действует единый государственный стандарт – ГОСТ 8.417 – 81 «ГСИ. Единицы физических величин», охватывающий все отрасли науки и техники и основанный на Международной системе единиц.
Международная система единиц физических величин является наиболее совершенной и универсальной из всех существовавших до настоящего времени.
Потребность в единой Международной системе единиц настолько велика, а преимущества ее настолько убедительны, что эта система за короткое время получила широкое международное признание и распространение.
Международная организация по стандартизации (ИСО) приняла в своих рекомендациях на единицы Международную систему единиц.
Организация объединенных наций по образованию, науке и культуре (ЮНЕСКО) призвала все страны - члены организации - принять Международную систему единиц.
Международная организация законодательной метрологии (МОЗМ) рекомендовала государствам - членам организации - ввести Международную систему единиц в законодательном порядке и градуировать в единицах СИ все измерительные приборы.
Международная система единиц вошла в рекомендации по единицам Международного союза чистой и прикладной физики, Международной электротехнической комиссии, Международного газового союза и других международных организаций.
