Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
гис.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
68.01 Кб
Скачать

2. Представление знаний. Экспертные системы

Важное место в теории искусственного интеллекта занимает проблема представления знаний, являющаяся, по мнению многих исследователей, ключевой. В общем виде модели представления знаний могут быть условно разделены на следующие классы:

1. Концептуальные модели используют эвристический метод, что позволяет при распознавании проблемы уменьшать время для ее предварительного анализа. Концептуальное описание не дает гарантии того, что метод может быть применен во всех соответствующих практических ситуациях. Практическое использование концептуальной модели влечет за собой необходимость преобразования ее в эмпирическую модель.

2. Эмпирические модели – это модели, как правило, описательного характера. Они могут варьировать от прос­того набора правил до полного описания.

3. Декларативные модели представления знаний основываются на предположении, что проблема представления некоей предметной области решается независимо от того, как эти знания потом будут использоваться. Поэтому модель как бы состоит из двух частей: статических описательных структур знаний и механизма вывода, оперирующего этими структурами и практически независимого от их содержательного наполнения. При этом в какой-то степени оказываются раздельными синтаксические и семантические аспекты знания, что является определенным достоинством указанных форм представления из-за  возможности достижения их определенной универсальности. Эти модели представляют собой обычно множество утверждений. Предметная область представляется в виде синтаксического описания ее состояния. Вывод решений основывается в основном на процедурах поиска в пространстве состояний.

4. Процедурные модели представляют собой модели, в которых знания содержатся в процедурах небольших программ, которые определяют, как выполнять характерные действия. При этом можно не описывать все возможные состояния среды или объекта для реализации вывода. Достаточно хранить некоторые начальные состояния и процедуры, генерирующие необходимые описания ситуаций и действий.

При процедурном представлении знаний семантика заложена в описание элементов базы знаний, за счет чего повышается эффективность поиска решений. Статическая база знаний содержит только утверждения, приемлемые в данный момент, которые могут быть изменены или удалены. Общие знания и правила вывода представлены в виде специальных целенаправленных процедур, активизирующихся по мере надобности. Для повышения эффективности генерации вывода в систему добавляются знания о том, каким образом использовать накопленные знания для решения конкретной задачи.

Преимущества процедурных моделей: имеют большую эффективность механизмов вывода за счет введения дополнительных знаний, способны смоделировать практически любую модель представления знаний, имеют большую выразительную силу, которая проявляется в расширенной системе выводов.

Представление знаний в экспертных системах производится с помощью специально разработанных моделей.

1. Логические модели. Классическим механизмом представления знаний в системах является исчисление предикатов. Предикатом или логической функцией называется функция от любого числа аргументов, принимающая истинные значения 1 и 0. В исследованиях по искусственному интеллекту данная модель стала использоваться начиная с 50-х годов.

В системах, основанных на исчислении предикатов, знания представляются с помощью перевода утверждений об объектах некоторой предметной области в формулы логики предикатов и добавления их как аксиом в систему. Знания отображаются совокупностью таких формул, а получение новых знаний сводится к реализации процедур ло­гического вывода. Однако действительность не укладывается в рамки классической логики, потому что человеческая логика, применяемая  при работе с неструктурированными знаниями – это интеллектуальная модель с нечеткой структурой. При использовании нечеткой логики часто применяются два метода логического вывода: прямой и обратный метод.

Достоинство логических моделей:

– модель базируется на классическом аппарате математической логики, методы которой хорошо изучены и обоснованы;

– имеются достаточно эффективные процедуры вывода;

– база знаний предназначена для хранения большого количества аксиом, из которых по правилам вывода можно получать другие знания.

Основной недостаток: логики, адекватно отражающей человеческое мышление, еще не создано

2. Продукционные модели. Впервые были предложены Постом в 1943 г., применены в системах искусственного интеллекта в 1972 г. При исследовании процессов рассуждения и принятия решений человеком пришли к выводу, что человек в процессе работы использует продукционные правила.Правило продукций (англ. Production) – это правило вывода, порождающее правило.

Суть правила продукции для представления знаний состоит в том, что в левой части ставится в соответствие некоторое условие, а в правой части действие: если <перечень условия>, то <перечень действий>. Если это действие соответствует значению «истина», то выполняется действие, заданное в правой части продукции. В общем случае под условием понимается некоторое предложение, по которому осуществляется поиск в базе знаний, а под действием – действия, выполняемые при успешном исходе поиска.

Продукционные модели – это набор, правил вида «условия – действие», где условиями являются утверждения о содержимом некой базы данных, а действия представляют собой процедуры, которые могут изменять содержимое базы данных. Например: Если коэффициент соотношения заемных и собственных средств превышает единицу при низкой оборачиваемости, то финансовая автономность и устойчивость критическая.

Правила (в них выражены знания) и факты (их оценивают с помощью правил) являются основным структурным элементом систем искусственного интеллекта. Часто в практики управления правила выводятся эмпирически из совокупности фактов, а не путем математического анализа или алгоритмического решения.  Такие правила называют эвристиками.

В продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил – машина вывода, связывает знание воедино и выводит из последовательности знаний заключение.

В процессе обработки информации часто применяются два метода: прямой и обратный. В случае прямого подхода – метода сопоставления для поиска решений образцом служит левая часть продукционного правила – условие и задача решается в направлении от исходного состояния к целевому. В случае обратного подхода обработка информации осуществляется по методу генерации или выдвижения гипотезы и ее проверки. Проверяются правые части продукционных правил с целью обнаружения в них искомого утверждения. Если такие продукционные правила существуют, то проверяется, удовлетворяет ли левая часть продукционного правила. Если да, то гипотеза подтверждается, если нет – отвергается.

В продукционных системах выделяют три основные компоненты:

– неструктурированная или структурированная БД;

– набор продукционных правил или продукций, каждая продукция состоит из двух частей:

a)  условий (антецендент); в этой части определяются некоторые условия, которые должны выполняться в БД для того, чтобы были выполнены соответствующие действия;

b)   действий (консеквент); эта часть содержит описание действий, которые должны быть совершены над БД в случае выполнения соответствующих условий. В простейших продукционных системах они только определяют, какие элементы следует добавить (или иногда удалить) в БД.

– интерпретатор, который последовательно определяет, какие продукции могут быть активированы в зависимости от условий, в них содержащихся; выбирает одно из применимых в данной ситуации правил продукций; выполняет действие из выбранной процедуры.

Продукционные модели близки к логическим моделям, но более наглядно отражают знания, поэтому являются наиболее распространен­ными средствами представления знаний. Чаще всего они применяются в промышленных экспертных системах, в качестве решателей или механизмов выводов.

Достоинства продукционных моделей:

– наглядность;

– высокая модульность – отдельные логические правила могут быть добавлены в базу знаний, удалены или изменены независимо от других, модульный принцип разработки систем позволяет автоматизировать их проектирование;

– легкость внесения дополнений и изменений;

– простота логического вывода.

Недостатки продукционных моделей:

– при большом количестве продукционных правил в базе знаний, изменение старого правила или добавления нового приводит к непред­сказуемым побочным эффектам;

– затруднительна оценка целостного образа знаний, содержащего в системе.

3. Семантические сети. Способ представления знаний с помощью сетевых моделей наиболее близок к тому, как они представлены в текстах на естественном языке. В его основе лежит идея о том, что вся необходимая информация может быть описана как совокупность троек: объекты или понятия и бинарное отношение между ними.

Наиболее общей сетевой моделью представления знаний являются семантические сети, в которых узлы и связи представляют собой объекты или понятия и их отношения, таким образом, что можно выяснить их значение. Это связано с тем, что в данной модели имеются средства реализации всех характерных для знаний свойств: внутренней интерпретации, стуктурированности, семантической метрики и активности. Впервые понятие семантических сетей было введено в 60-х годах для представления семантических связей между концепциями слов.

Семантические сети применительно к задачам проектирования структуры баз данных экспертных систем используются в сравнительно узком диапазоне – для отражения структуры понятий и структуры событий. Они представляют собой модель, основой которой является формализация знаний в виде ориентированных графов с помеченными дугами, которая позволяют структурировать имеющуюся информацию и знания. Вершины графа соответствуют конкретным объектам, а дуги, их соединяющие, отражают имеющиеся между ними отношения. Построение сети способствует осмыслению информации и знаний, поскольку позволяет установить противоречивые ситуации, недостаточность имеющейся информации и т.п.

В семантических сетях, используются следующие отношения:

– лингвистические, включающие в себя отношения типа «объект», «агент», «условие», «место», «инструмент», «цель», «время» и др.;

– атрибутивные, к которым относят форму, размер, цвет и т.д.;

– характеризации глаголов, т. е. род, время, наклонение, залог, число;

– логические, обеспечивающие выполнение операций для исчисления высказываний (дизъюнкция, конъюнкция, импликация, отрицание);

– квантифицированные, т. е. использующие кванторы общности и существования;

– теоретико-множественные, включающие понятия «элемент множества», «подмножество», «супермножество» и др.

Различают:

– интенсиональную семантическую сеть, которая описывает предметную область на обобщенном, концептуальном уровне;

– экстенсиональную семантическую сеть, в которой производится конкретизация и наполнение фактическими данными.

Статические базы знаний, представленные с помощью семантических сетей, могут быть объектом действий, производимых активными процессами. Стандартные операции включают в себя процессы поиска и сопоставления, с помощью которых определяется, представлена ли в семантической модели (и где именно) специфическая информация.

Достоинство семантической сети:

– описание объектов и событий производится на уровне очень близком к естественному языку;

– обеспечивается возможность соединения различных фрагментов сети;

– отношения между понятиями и событиями образуют небольшое, хорошо организованное множество;

– для каждой операции над данными или знаниями можно выделить некоторый участок сети, который охватывает необходимые в данном запросе характеристики;

– обеспечивается наглядность системы знаний, представленной графически:

– близость структуры сети, представляющей знания, семантической структуре фраз на естественном языке;

– соответствие сети современным представлениям об организации долговременной памяти человека.

Недостатки семантической сети:

– сетевая модель не дает ясного представления о структуре предметной области, поэтому формирование и модификация такой модели затруднительны;

– сетевые модели представляют собой пассивные структуры, для обработки которых необходим специальный аппарат формального вывода и планирования.

Семантические сети нашли применение в основном в системах обработки естественного языка, частично в вопросно-ответных системах, а также в системах искусственного видения. В последних семантические сети используются для хранения знаний о структуре, форме и свойствах физических объектов. В области обработки естественного языка с помощью семантических сетей представляют семантические знания, знания о мире, эпизодические знания (т.е. знания о пространственно-временных событиях и состояниях).

В настоящее время экспертные системы используются для решения различных типов задач в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, химия, образование, телекоммуникации и связь и др. Рассмотрим наиболее яркие примеры экспертных систем.

Примеры экспертных систем в военном деле

ACES. Экспертная система выполняет картографические работы по нанесению обстановки на карты. Система получает в качестве исходных данных карту без обстановки и информацию, описывающую расположение объектов на местности. Система выдает карту, содержащую все желаемые условные обозначения и подписи, размещенные без взаимного наложения. ACES применяет объектно-ориентированную схему представления знаний и реализована на языке Loops для работы на АРМ Xerox Dolphin. Система разработана компанией ESL и доведена до уровня исследовательского прототипа.

ASTA. Экспертная система помогает аналитику определить тип радара, пославшего перехваченный сигнал. Система анализирует этот сигнал в свете имеющихся у нее общих знаний о физике радаров и специальных знаний о конкретных типах радарных систем. ASTA также помогает аналитику, обеспечивая ему доступ к соответствующим базам данных и давая объяснения своим заключениям. Знания в системе представлены в виде правил. Эта система разработана компанией Advanced Information & Decision Systems и доведена до уровня исследовательского прототипа.

DART. Экспертная система помогает обрабатывать разведданные о центрах командования, управления и связи противника. Она дает советы аналитикам по идентификации критических узлов сети командования, управления и связи и помогает обрабатывать сообщения о боевой обстановке. Система DART реализована на языках Паскаль и Си для компьютерных систем VAX 11/780. Она разработана компанией «Par Technology Corporation» и доведена до уровня исследовательского прототипа.

HANNIBAL. Экспертная система выполняет оценивание ситуаций в области разведки радиообмена противника. Система идентифицирует соединения противника и боевой порядок их связи, интерпретируя данные радиоперехвата. Эти данные включают информацию о местонахождении и характеристиках сигналов (частоте, модуляции, классе канала и другие) обнаруженных средств связи. Знания в системе представлены в рамках архитектуры доски объявлений, координирующей деятельность нескольких специалистов, или источников знаний. Система реализована с помощью средств AGE. Она разработана компанией ESL и доведена до уровня исследовательского прототипа.

I&W. Экспертная система помогает аналитикам из разведки предсказывать, когда и где произойдет следующее вооруженное столкновение. Система анализирует поступающие сообщения разведки, например донесения о местонахождении воинских соединений, их деятельности и передвижениях, применяя знания об обычных признаках активности войск. Знания представлены в рамках архитектуры доски объявлений, в которой для обеспечения компетентности применены как правила с прямой цепочкой рассуждений, так и фреймы. Система реализована на языке INTERLISP-D для АРМ Xerox 1100. Она разработана компанией ESL в сотрудничестве со Стенфордским университетом и доведена до уровня демонстрационного прототипа.

RUBRIC. Экспертная система помогает пользователю получить доступ к базам данных, содержащим неформатированные тексты. Например, когда пользователь называет какую-нибудь тему, RUBRIC автоматически разыскивает все документы, содержащие тексты, связанные с этой темой. В системе RUBRIC взаимоотношения между темами, подтемами и фразами, содержащими ключевые слова, выражены в виде правил. Правила также определяют другие варианты терминов, выражений и способов написания одной и той же темы или понятия. Пользователь может сформулировать запрос в виде правила, задающего критерий поиска, например эвристический вес, определяющий насколько сильно образец правила указывает на наличие темы правила. В ходе поиска RUBRIC предоставляет пользователю документы, которые лежат в кластере, содержащем по крайней мере один документ с весом выше заданного пользователем порога. Это предотвращает ситуацию, в которой произвольно выбранный порог мог бы разделить близкие по рангу документы. Система реализована на языке FRANZ LISP, разработана компанией «Advanced Information & Decision Systems» и доведена до уровня исследовательского прототипа.

Пример экспертной системы в информатике

CODES. Экспертная система помогает разработчику базы данных, желающему использовать подход IDEF1 для определения концептуальной схемы базы данных. Хотя в качестве подхода IDEF1 полезна, сложность ее правил часто сдерживает ее применение. Разработчик описывает, какие свойства и взаимосвязи желательны в базе данных, под руководством системы CODES, осуществляемым в форме диалога. Затем система применяет свои знания в виде правил и эвристик IDEF1 для построения концептуальной схемы разрабатываемой базы данных. Знания в CODES представлены в виде правил с применением обратной цепочки рассуждений в качестве стратегии управления. CODES реализована на языке UCI LISP. Она была разработана в Университете штата Южная Калифорния и доведена до уровня демонстрационного прототипа.

Пример экспертной системы в компьютерных системах

MIXER. Экспертная система оказывает помощь программистам в написании микропрограмм для разработанной Texas Instruments СБИС TI990. По заданному описанию микропрограммы система получает оптимизированные микропрограммы для TI990. MIXER содержит знания по микропрограммированию для TI990, взятые из руководства и из анализа микропрограммы управляющего ПЗУ TI990. Сюда относятся знания о том, как преобразовывать введенные описания в наборы промежуточных операций, как выделить соответствующие регистры под переменные и как преобразовать промежуточные операции в наборы микроопераций. MIXER использует эти знания, чтобы определить, какие микрооперации являются лучшими для реализации микропрограммы. Система представляет знания в виде правил и данных, обладает унификацией, управляемой механизмом вывода, и динамическим возвратом. MIXER реализована на языке Пролог. Она была разработана в Токийском университете и доведена до уровня демонстрационного прототипа.

Пример экспертной системы в электронике

ACE. Экспертная система определяет неисправности в телефонной сети и дает рекомендации по необходимому ремонту и восстановительным мероприятиям. Система работает без вмешательства пользователя, анализируя сводки-отчеты о состоянии, получаемые ежедневно с помощью CRAS, программы, следящей за ходом ремонтных работ в кабельной сети. ACE обнаруживает неисправные телефонные кабели и затем решает, нуждаются ли они в планово-предупредительном ремонте и выбирает, какой тип ремонтных работ вероятнее всего будет эффективным. Затем ACE запоминает свои рекомендации в специальной базе данных, к которой у пользователя есть доступ. Система принимает решения, применяя знания относительно телефонных станций, сообщения системы CRAS и стратегии анализа сетей. Представление знаний в системе основано на правилах, используется схема управления посредством прямой цепочки рассуждений. АСЕ реализована на языках OPS4 и FRANZ LISP и работает на микропроцессорах серии AT&T 3B-2, размещенных в подстанциях наблюдения состояния кабеля. Она разработана в Bell Laboratories. АСЕ прошла опытную эксплуатацию и доведена до уровня коммерческой экспертной системы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]