- •Частина III. Динаміка Лекція 21 основні закони динаміки
- •21.1. Чотири закони класичної механіки
- •21.2. Динамічні рівняння руху матеріальної точки в декартових координатах та в натуральній формі
- •Лекція 22 дві основні задачі динаміки матеріальної точки
- •22.1. Пряма або перша основна задача
- •22.2. Обернена, або друга, основна задача
- •План розв’язування другої ( оберненої) задачі динаміки точки:
- •22.3. Приклади розв’язання оберненої задачі динаміки матеріальної точки
- •1 . Прямолінійний рух.
- •2. Криволінійний рух.
- •Запишемо диференціальне рівняння руху матеріальної точки
- •Лекція 23 динаміка відносного руху матеріальної точки
- •23.1. Диференціальні рівняння відносного руху матеріальної точки
- •23.3. Випадок відносного спокою. Сила ваги
- •23.4. Приклади розв’язування задач динаміки відносного руху матеріальної точки
- •Запишемо векторне рівняння відносно руху точки :
- •Лекція 24 Загальні відомості про механічну систему. Моменти інерції тіл
- •24.1. Класифікація і властивості сил, що діють на механічну систему
- •1. Головний вектор всіх внутрішніх сил механічної системи дорівнює нулю:
- •2. Головний вектор-момент всіх внутрішніх сил механічної системи відносно довільного нерухомого центра дорівнює нулю:
- •24.2. Центр мас механічної системи і його положення.
- •24.3. Момент інерції твердого тіла, що обертається навколо нерухомої осі. Радіус інерції.
- •24.4. Теорема про моменти інерції тіла відносно паралельних осей:
- •24.5. Приклади визначення моментів інерції тіл канонічної форми
- •4 . Момент інерції .Кулі
- •6. Момент інерції однорідної правильної прямокутної піраміди.
- •6. Моменти інерції прямокутного паралелепіпеда:
- •Лекція 25 рух центру мас механічної системи. Кількість руху матеріальної точки. Головний вектор кількості руху механічної системи
- •25.1. Теорема про рух центра мас механічної системи
- •25.2. Імпульс сили та його проекції на координатні осі
- •Отже, проекція імпульсу сили на вісь дорівнює імпульсу проекції сили на цю вісь . Модуль і напрям імпульсу сили визначається за формулами:
- •25.3. Теорема про зміну кількості руху матеріальної точки.
- •25.4 Теорема про зміну головного вектора кількості руху механічної системи
- •25.5. Приклади розв’язання задач
- •Звідки, після нескладних перетворень дістанемо:
- •Лекція 26 момент кількості руху матеріальної точки
- •26.1. Момент кількості руху матеріальної точки відносно центра і осі
- •26.2. Теорема про зміну моменту кількості руху матеріальної точки:
- •26.3. Рух матеріальної точки під дією центральної сили. Закон площин
- •Лекція 27 кінетичний момент механічної системи
- •27.1 Головний момент кількості руху механічної системи або кінетичний момент механічної системи відносно центра та відносно осі
- •27.2. Кінетичний момент тіла, що обертається навколо нерухомої осі, відносно цієї осі
- •27.3. Теорема про зміну кінетичного моменту механічної системи.
- •27.4 . Збереження кінетичного моменту механічної системи
- •27.5. Приклад розв’язання задачі
- •Робота сили та кінетична енергія матеріальної точки матеріальної системи Лекція 28 Робота сили та її Потужність
- •28.1. Формули визначення роботи сили та її потужності потужності
- •28.2. Теорема про роботу рівнодійної:
- •28.3. Теорема про роботу внутрішніх сил незмінної системи
- •28.4. Робота сили ваги
- •28.5. Робота сили пружності на скінченому прямолінійному переміщенні
- •2 8.6. Робота і потужність сили, прикладеної до твердого тіла, що обертається навколо нерухомої осі
- •29.1. Теорема про зміну кінетичної енергії матеріальної точки
- •29.2. Закон збереження повної механічної енергії матеріальної точки при дії на неї потенціальних сил:
- •29.3. Теорема про зміну кінетичної енергії механічної системи
- •29.4. Обчислення кінетичної енергії механічної системи в залежності від виду її руху
- •30.1. Диференціальні рівняння поступального руху твердого тіла
- •30.2. Диференціальне рівняння обертального руху твердого тіла навколо нерухомої осі
- •30.3. Фізичний маятник та його малі коливання.
- •Обмежимося розглядом малих коливань фізичного маятника, для яких . Тоді рівняння (30.6) набуде вигляду:
- •30.5. Експериментальне визначення моментів інерції тіл
- •30.5. Диференціальні рівняння плоскопаралельного руху твердого тіла.
- •30.7. Приклади розв’язання задач
- •Лекція 31 принцип д’аламбера. Головний вектор і головний момент сил інерції
- •31.1. Принцип д’Аламбера для матеріальної точки
- •31.2. Принцип д’Аламбера для механічної системи
- •31.3. Головний вектор і головний момент сил інерції
- •Лекція 32 застосування принципу д’аламбера
- •32.1. Зведення сил інерції точок твердого тіла до найпростішого вигляду при поступальному, обертальному та плоскопаралельному русі
- •32.2. Визначення додаткових динамічних реакцій при русі зв’язаної механічної системи.
- •32.3. Приклад визначення додаткових динамічних реакцій підшипників при обертальному русі механічної системи навколо нерухомої осі
31.3. Головний вектор і головний момент сил інерції
Застосування принципу Д’Аламбера для рухомої механічної системи вимагає вміння обчислювати головний вектор і головний вектор-момент сил інерції.
Знаючи
вектори
та
та їхні проекції на кожну з трьох
координатних осей, можна скласти рівняння
(31.7)
для зв’язаної механічної системи, що
рухається прискорено, з яких потім
визначити невідомі величини.
Сили інерції точок механічної системи у загальному випадку утворюють довільну просторову систему сил, яку за допомогою метода Пуансо можна привести до найпростішого вигляду.
Головний вектор сил інерції дорівнюватиме
.
(31.8)
Запишемо формулу для визначення радіус-вектора центра мас механічної системи:
,
де
,
Похідна за часом:
,
звідки
.
Оскільки вираз в дужках формули (31.8) являє собою суму кількості руху точок заданої механічної системи, то зважаючи на попереднє, маємо:
,
Остаточно маємо:
.
(31.9)
З іншого боку
і тому
.
(31.10)
Отже, головний вектор всіх сил інерції точок механічної системи дорівнює взятій з від’ємним знаком векторній похідній за часом від головного вектора кількості руху механічної системи (31.9), або взятим з від’ємним знаком добутку маси системи на вектор прискорення центра мас цієї системи (31.10).
Головний вектор-момент сил інерції відносно будь-якого нерухомого центра дорівнює
.
Тут
–
кінетичний момент механічної системи
відносно нерухомого центра.
Таким чином, остаточно
.
(31.11)
Отже, головний вектор-момент сил інерції точок системи відносно нерухомого центра дорівнює взятій з від’ємним знаком векторній похідній за часом від кінетичного моменту даної системи відносно того самого центра (31.11).
Лекція 32 застосування принципу д’аламбера
32.1. Зведення сил інерції точок твердого тіла до найпростішого вигляду при поступальному, обертальному та плоскопаралельному русі
І. Поступальний рух тіла.
При поступальному русі твердого тіла всі його точки мають геометрично рівні швидкості і прискорення, які дорівнюють швидкості і прискоренню центра мас.
Приймемо
центр мас тіла за центр зведення сил
інерції. Оскільки обертання тіла навколо
центра мас не відбувається, то головний
вектор-момент сил інерції відносно
центра мас дорівнюватиме нулю, тобто
.
Отже, при поступальному русі твердого тіла сили інерції його точок зводяться до рівнодійної, що дорівнює головному вектору, яка прикладена в центрі мас тіла та має напрям, протилежний до напряму вектора прискорення:
.
(32.1)
ІІ. Обертання тіла, що має площину матеріальної симетрії, навколо нерухомої головної центральної осі.
В
цьому випадку центр мас тіла лежить на
осі обертання і є нерухомим, тобто його
прискорення
,
тоді:
.
Кінетичний момент тіла, що обертається відносно осі обертання, дорівнює:
.
При цьому головний вектор – момент сил інерції дорівнюватиме:
або
.
(32.2)
Отже, при обертанні твердого тіла навколо головної центральної нерухомої осі сили інерції точок тіла зводяться до пари сил, що лежить в площині матеріальної симетрії, а вектор – момент цієї пари дорівнює добутку момента інерції тіла на вектор кутового прискорення і має напрям, протилежно до напряму вектора кутового прискорення.
ІІІ. Плоскопаралельний рух твердого тіла, що має площину матеріальної симетрії.
Нехай тіло, що має площину матеріальної симетрії, рухається так, що всі його точки рухаються паралельно до цієї площини (рис. 32.1).
Цей рух можна розкласти на поступальний разом із центром мас т. С і на обертальний рух навколо рухомої осі , яка перпендикулярна до площини симетрії і проходить через центр мас.
Як
відомо, при поступальному русі сили
інерції зводяться до головного вектора
,
а при обертальному русі навколо головної
центральної осі сили інерції зводяться
до пари сил з вектором-моментом
,
тобто
тут маємо
два фактори сил інерції:
і
.
(32.3)
О
тже,
при русі твердого тіла, що має площину
матеріальної симетрії, паралельно до
цієї площини, сили інерції точок тіла
зводяться до однієї сили, що лежить в
площині матеріальної симетрії, яку
прикладено в центрі мас, що дорівнює
головному вектору сил інерції
,
та до однієї пари сил, яка лежить в
площині матеріальної симетрії, з
вектор-моментом
,
що дорівнює головному моменту сил
інерції відносно рухомої осі
,
яка проходить через центр мас
перпендикулярно до площини мате-ріальної
симетрії тіла (рис. 32.1).
Приклад.
Кільце, радіуса
і маси
,
котиться без ковзання за прямолінійною
дорогою, маючи в даний момент часу
швидкість центра
та прискорення
(рис. 32.2). Знайти два фактори сил інерції,
які діють на колесо в даний момент часу.
Р
озвязання.
Точка дотику колеса і поверхні т.Р
–МЦШ. Тоді
.
Т.С –
центр мас колеса.
Враховуючи (32.3) маємо
та
.
Покажемо на рисунку їх напрямки.
За модулем
і
,
де
.
Тоді остаточно маємо
.
