Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория статистики дистанционка.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.92 Mб
Скачать

Методы анализа основной тенденции (тренда) в рядах динамики

Важной задачей статистики при анализе рядов динамики является определение основной тенденции развития, присущей тому или иному ряду динамики. Например, за колебаниями урожайности какой-либо сельскохозяйственной культуры в отдельные годы тенденция роста (уменьшения) урожайности может не просматриваться непосредственно, и поэтому должна быть выявлена статистическими методами.

Методы анализа основной тенденции в рядах динамики разделяются на две основные группы:

1) сглаживание или механическое выравнивание отдельных членов ряда динамики с использованием фактических значений соседних уровней;

2) выравнивание с применением кривой, проведенной между конкретными уровнями таким образом, чтобы она отображала тенденцию, присущую ряду и одновременно освободила его от незначительных колебаний.

Рассмотрим методы каждой группы.

Метод укрупнения интервалов. Если рассматривать уровни экономических показателей за короткие промежутки времени, то в силу влияния различных факторов, действующих в разных направлениях, в рядах динамики наблюдается снижение и повышение этих уровней. Это мешает видеть основную тенденцию развития изучаемого явления. В этом случае для наглядного представления тренда применяется метод укрупнения интервалов, который основан на укрупнении периодов времени, к которым относятся уровни ряда. Например, ряд ежесуточного выпуска продукции заменяется рядом месячного выпуска продукции и т.д.

Метод простой скользящей средней. Сглаживание ряда динамики с помощью скользящей средней заключается в том, что вычисляется средний уровень из определенного числа первых по порядку уровней ряда, затем средний уровень из такого же числа уровней, начиная со второго, далее - начиная с третьего и т.д. Таким образом, при расчетах среднего уровня как бы «скользят» по ряду динамики от его начала к концу, каждый раз отбрасывая один и уровень вначале и добавляя один следующий. Отсюда название - скользящая средняя.

Каждое звено скользящей средней - это средней уровень за соответствующий период, который относится к середине выбранного периода, если число уровней ряда динамики нечетное.

Нахождение скользящей средней по четному числу членов рядов динамики несколько сложнее, так как средняя может быть отнесена только к середине между двумя датами, находящимися в середине интервала сглаживания. Например, средняя, найденная для четырех членов, относится к середине между вторым и третьим, третьим и четвертым уровнями и так далее. Чтобы ликвидировать такой сдвиг, применяют так называемый способ центрирования. Центрирование заключается в нахождении средней из двух смежных скользящих средних для отнесения полученного уровня к определенной дате. При центрировании необходимо находить скользящие суммы, скользящие средние нецентрированные по этим суммам и средние из двух смежных нецентрированных скользящих средних.

Покажем расчет 5-летней и 4-летней скользящей средней на примере данных

Сглаживание урожайности зерновых культур в хозяйстве за 2000-2115 гг. Методом скользящей средней

Годы

Центнеров

с га

Скользящие пятилетние суммы

Пятилетние скользящие средние

Скользящие четырехлетние суммы

Четырехлетние скользящие средние (нецентрированные)

Четырехлетние скользящие средние (центрированные)

А

1

2

3

4

5

6

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

9,5

13,7

12,1

14,0

13,2

15,6

15,4

14,0

17,6

15,4

10,9

17,5

15,0

18,5

14,2

14,9

-

-

-

-

63,5

68,6

70,3

72,2

75,8

78,0

73,5

75,4

76,4

77,3

76,1

80,1

-

-

12,5

13,7

14,1

14,4

15,2

15,6

14,7

15,1

15,3

15,5

15,2

16,0

-

-

-

-

-

49,3

53,0

54,9

58,2

58,2

62,6

62,4

57,9

61,4

58,8

61,9

65,2

62,6

-

-

12,3

13,2

13,7

14,6

14,6

15,7

15,6

14,5

15,3

14,7

15,5

16,3

15,65

-

-

-

12,8

13,5

14,1

14,6

15,1

15,6

15,0

14,9

15,0

15,1

15,8

15,97

-

-

Недостаток метода простой скользящей средней состоит в том, что сглаженный ряд динамики сокращается ввиду невозможности получить сглаженные уровни для начала и конца ряда. Этот недостаток устраняется применением метода аналитического выравнивания для анализа основной тенденции.

Аналитическое выравнивание предполагает представление уровней данного ряда динамики в виде функции времени - y=f(t).

Для отображения основной тенденции развития явлений во времени применяются различные функции: полиномы степени, экспоненты, логистические кривые и другие виды.

Полиномы имеют следующий вид:

полином первой степени

полином второй степени

полином третьей степени

полином n-ой степени. +…+

Здесь а0; а1; а2; ... аn - параметры полиномов, t - условное обозначение времени. В статистической практике параметры полиномов невысокой степени иногда имеют конкретную интерпретацию характеристик динамического ряда. Так, параметр а0 трактуется как характеристика средних условий ряда динамики, параметры а1, а2, а3 - как изменения ускорения. t

После выбора вида уравнения необходимо определить параметры уравнения. Самый распространенный способ определения параметров уравнения - это метод наименьших квадратов. Согласно этому методу, для нахождения параметров полинома n-й степени необходимо решить систему так называемых нормальных уравнений, но для упрощения ее решения используют метод кодировки для : системы отсчета времени "t". Причем эта система выбирается таким образом, чтобы .

Например:

Годы 2000 2001 2002 2003 2004 2005 2006

Значение"t". -3 -2 -1 0 +1 +2 +3

Если число уровней ряда четное, то вместо нуля в центре мы поставили бы единицы с противоположными знаками у двух уровней, находящихся в середине ряда. Тогда разница между годами составляла бы две единицы времени и общий вид систем был бы таким (например, для ряда из 6 уровней):

2001 2002 2003 2004 2005 2006

-5 -3 -1 +1 +3 +5

В случае применения упрощенной системы отсчета времени параметры уравнения находятся по упрощенным формулам:

-для полинома 1 –ой степени

для полинома 2-ой степени

При сглаживании ряда динамики по показательной кривой yt=a0a1t

Важное место в системе методов прогнозирования занимают статистические методы. Применение прогнозирования предполагает, что закономерность развития, действующая в прошлом (внутри ряда динамики), сохранится и в прогнозируемом будущем, то есть прогноз основан на экстраполяции. Экстраполяция, проводимая в будущее, называется перспективой и в прошлое - ретроспективой. Обычно, говоря об экстраполяции рядов динамики, подразумевает чаще всего перспективную экстраполяцию.

В зависимости от того, какие принципы и какие исходные данные положены в основу прогноза, можно выделить следующие элементарные методы экстраполяции: среднего абсолютного прироста, среднего темпа роста и экстраполяция на основе выравнивания рядов по ка-кой-либо аналитической формуле.

Прогнозирование по среднему абсолютному приросту может быть выполнено в том случае, если есть уверенность считать общую тенденцию линейной, то есть метод основан на предположении о равномерном изменении уровня (под равномерностью понимается стабильность абсолютных приростов): к последнему уровню прибавляется средний абсолютный прирост умноженный на период экстраполяции.

Прогнозирование по среднему темпу роста можно осуществлять в случае, когда есть основание считать, что общая тенденция ряда характеризуется показательной (экспоненциальной) кривой. Для нахождения тенденции в этом случае необходимо средний коэффициент роста, возведенный в степень, соответствующую пределу экстраполяции умножить на последний уровень.

При аналитическом выражение тренда достаточно продолжить значения независимой переменной времени (t).

Пример

Рассмотрим для примера расчет аналитических показателей ,динамики по следующим данным:

Число зарегистрированных крестьянских (фермерских) хозяйств в Российской Федерации

годы

2001

2002

2003

2004

2005

Тыс.

4.4

49,0

182,8

270,0

279,2

На основе этих данных необходимо рассчитать абсолютные приросты. темпы роста и прироста, средний уровень ряда, средний темп роста и прироста, а также абсолютное значение одного процента прироста.

Для расчета абсолютного прироста необходимо из уровня каждого последующего года вычесть уровень предыдущего или начального года (или какого-либо другого, принятого за базу сравнения). Так, например, абсолютный прирост в 2005г. по сравнению с 2004г. составил 279,2-270,0=9,2тыс.,а по сравнению с начальным - 2001г. 279,2-4,4 = 274,8тыс. Темп роста представляет собой отношение уровня последующего года к уровню предыдущего или начального. Так для 2005г. темп роста по сравнению с 2004г. составил (279,2:270,0)-100 = 103,4%, а по сравнению с 2001 г. (279,2:4,4) • 100 = 634,5% .

Темп прироста есть отношение абсолютного прироста к предыдущему или начальному уровню (или какому-либо другому, принятому за базу сравнения). Для 2005г. по сравнению с 2004г. темп роста равен (9,2:270,0)-100=3,4% или 103,4-100=3,4%.

Абсолютное значение одного процента прироста получается в результате деления абсолютного прироста по сравнению с предыдущим периодом на соответствующий темп роста, выраженный в процентах.

Приведем в таблице результат расчета всех этих показателей анализа ряда динамики

Годы

Число

хозяйств

в тыс.

Абсолютные прирост по сравнению .тыс.

Темп роста, в % к

Темп прироста, в % к

Абсолютное значение 1% прироста, тыс.

С преды-дущим годом

С 2001 годом

преды-дущему

2001 году

Преды-дущему

2001 году

2001

4.4

-

-

-

100.0

-

0.0

-

2002

49.0

+44.6

+44.6

1113.6

1113.

1013.6

1013.6

0.044

2003

182.8

+ 133.8

+ 178.4

373.1

4154.5

273.1

4054.5

0.49

2004

270.0

+87.2

+265.6

147.7

6136.4

47.7

6036.4

1.83

2005

279.2

+9.2

+274.8

103.4

6345.5

3.4

6245.5

2.70

785.4

274.8

-

-

-

-

-

-

Рассчитаем также средние показатели. Средний уровень ряда динамики числа фермерских хозяйств рассчитывается по формуле средней арифметической простой, поскольку данный ряд интервальный:

Столь же просто находится средний абсолютный прирост:

Для расчета среднего темпа роста используем среднюю геометрическую:

или 100,9%

Следующей проблемой изучения динамики является выявление основной тенденции, то есть главного направления в изменении изучаемого явления. Речь идет о случаях скрытой тенденции, присущей тому или иному ряду динамику. Например, за колебаниями уровней урожайности какой-либо сельскохозяйственной культуры в отдельные годы тенденция роста урожайности может не просматриваться непосредственно, и поэтому должна быть выявлена статистически.

Из различных методов выявления тенденции, обычно рассматриваемых в учебной литературе (укрупнение интервалов, механическое сглаживание, аналитическое выравнивание), обратите особое внимание на последний. Необходимо учитывать, что аналитическое выравнивание представляет собой частный случай применения метода регрессии к анализу социально-экономических явлений. Этот метод заключается в том, что уровни ряда динамики представляются как функция времени (t):

В качестве примера произведем выравнивание данных о выплавке чугуна по уравнению прямой

Таблица 14

Таблица исходных данных и расчетных данных (цифры условные)

Годы

Выплавка чугуна

(млн.т)

t

t2

(млн.т)

2001

108

-2

4

-216

109.36

2002

107

-1

1

-107

109.48

2003

110

0

0

0

109.60

2004

111

+ 1

1

+ 111

109.72

2005

112

+2

4

+224

109.84

ИТОГО

548

0

10

+ 12

548.0

Пояснения к таблице. Первые две графы - исходные уровни ряда динамики дополняются графой, в которой показана система отсчета времени "t". Причем эта система выбирается таким образом, чтобы

Если число уровней ряда четное, то вместо нуля в центре мы поставили бы единицы с противоположными знаками у двух уровней, находящихся в середине ряда. Тогда разница между годами составляла бы две единицы времени и общий вид систем был бы таким (например, для ряда из 6 уровней):

2000 2001 2002 2003 2004 2005

-5 -3 -1 +1 +3 +5

В случае применения упрощенной системы отсчета времени параметры уравнения находятся по упрощенным формулам:

Таким образом, уравнение, выражающее тенденцию роста выплавки чугуна, имеет вид:

На основе этого уравнения находятся выравненные годовые уровни путем подстановки в него соответствующих значений "t" (они показаны в последней графе таблицы, причем общий объем фермерских хозяйств остался неизменным).