- •Глава I
- •§ 1. Электростатическое поле проводников
- •§ 2. Энергия электростатического поля проводников
- •§ 3. Методы решения электростатических задач
- •2 Л. Д. Ландау, е. М. Лифшиц
- •§ 4. Проводящий эллипсоид
- •§ 5. Силы, действующие на проводник
- •Глава II
- •§ 6. Электростатическое поле в диэлектриках
- •§ 7. Диэлектрическая проницаемость
- •§ 8. Диэлектрический эллипсоид
- •§ 9. Диэлектрическая проницаемость смеси
- •§ 10. Термодинамические соотношения для диэлектриков в электрическом поле
- •§ 11. Полная свободная энергия диэлектрического тела
- •§12. Электрострикция изотропных диэлектриков
- •§ 13. Диэлектрические свойства кристаллов
- •§ 14. Положительность диэлектрической восприимчивости
- •§ 15. Электрические силы в жидком диэлектрике
- •§ 16. Электрические силы в твердых телах
- •§17. Пьезоэлектрики
- •§ 18. Термодинамические неравенства
- •§ 19. Сегнетоэлектрики
- •§ 20. Несобственные сегнетоэлектрики
- •Глава III
- •§ 21. Плотность тока и проводимость
- •§ 22. Эффект Холла
- •§ 23. Контактная разность потенциалов
- •§ 24. Гальванический элемент
- •§ 25. Электрокапиллярность
- •§ 26. Термоэлектрические явления
- •§ 27. Термогальваномагнитные явления
- •§ 28. Диффузионно-электрические явления
- •Глава IV
- •§ 29. Постоянное магнитное поле
- •§ 30. Магнитное поле постоянных токов
- •§ 31. Термодинамические соотношения в магнитном поле
- •§ 32. Полная свободная энергия магнетика
- •§ 33. Энергия системы токов
- •§ 34. Самоиндукция линейных проводников
- •§ 35. Силы в магнитном поле
- •§ 36. Гиромагнитные явления
- •Глава V
- •§ 37. Магнитная симметрия кристаллов
- •§ 38. Магнитные классы и пространственные группы
- •§ 39. Ферромагнетик вблизи точки Кюри
- •§ 40. Энергия магнитной анизотропии
- •§ 41. Кривая намагничения ферромагнетиков
- •§ 42. Магнитострикция ферромагнетиков
- •§ 43. Поверхностное натяжение доменной стенки
- •§ 44. Доменная структура ферромагнетиков
- •§ 45. Однодоменные частицы
- •§ 46. Ориентационные переходы
- •§ 47. Флуктуации в ферромагнетике
- •§ 48. Антиферромагнетик вблизи точки Кюри
- •§ 49. Бикритическая точка антиферромагнетика
- •§ 50. Слабый ферромагнетизм
- •§ 51. Пьезомагнетизм и магнитоэлектрический эффект
- •§ 52. Геликоидальная магнитная структура
- •Глава VI
- •§ 53. Магнитные свойства сверхпроводников
- •§ 54. Сверхпроводящий ток
- •§ 55. Критическое поле
- •2) Мы приводим здесь вычисления с большей точностью, чем это обычно требуется, имея в виду выявить более ясно взаимоотношение между различными термодинамическими величинами.
- •§ 56. Промежуточное состояние
- •§ 57. Структура промежуточного состояния
- •Глава VII
- •§ 58. Уравнения квазистационарного поля
- •§ 59. Глубина проникновения магнитного поля в проводник
- •VaRe{a6*}.
- •§ 60. Скин-эффект
- •§ 61. Комплексное сопротивление
- •§ 62. Емкость в цепи квазистационарного тока
- •§ 63. Движение проводника в магнитном поле
- •0 Из этой формулы видно, что дополнительное тепло, выделяющееся (в течение времени 60 в проводнике при его движении в магнитном поле, есть
- •§ 64. Возбуждение тока ускорением
- •Глава VIII
- •§ 65. Уравнения движения жидкости в магнитном поле
- •§65] Уравнения движения жидкости в магнитном поле 315
- •§66] Диссипативные процессы в магнитной гидродинамике 317
- •§ 66. Диссипативные процессы в магнитной гидродинамике
- •§ 67. Магнитогидродинамическое течение между параллельными плоскостями
- •§ 68. Равновесные конфигурации
- •§ 69. Магнитогидродинамические волны
- •VX&0, Vytt—hjV4пр ,
- •§ 70. Условия на разрывах
- •§ 71. Тангенциальные и вращательные разрывы
- •§ 72. Ударные волны
- •§ 73. Условие эволюционности ударных волн
- •§ 74. Турбулентное динамо
- •Глава IX
- •§ 75. Уравнения поля в диэлектриках в отсутствие дисперсии
- •§ 76. Электродинамика движущихся диэлектриков
- •§ 77. Дисперсия диэлектрической проницаемости
- •§ 78. Диэлектрическая проницаемость при очень больших частотах
- •§ 79. Дисперсия магнитной проницаемости
- •§ 80. Энергия поля в диспергирующих средах
- •§ 81. Тензор напряжений в диспергирующих средах
- •§ 82. Аналитические свойства функции е(со)
- •§ 83. Плоская монохроматическая волна
- •§ 84. Прозрачные среды
- •Глава X
- •§ 85. Геометрическая оптика
- •§ 86. Отражение и преломление волн
- •§ 87. Поверхностный импеданс металлов
- •§ 88. Распространение волн в неоднородной среде
- •§ 89. Принцип взаимности
- •§ 90. Электромагнитные колебания в полых резонаторах
- •§ 91. Распространение электромагнитных волн в волноводах
- •§ 92. Рассеяние электромагнитных волн на малых частицах
- •§ 93. Поглощение электромагнитных волн на малых частицах
- •§ 94. Дифракция на клине
- •§ 95. Дифракция на плоском экране
- •Глава XI
- •§ 96. Диэлектрическая проницаемость кристаллов
- •§ 97. Плоская волна в анизотропной среде
- •§ 98. Оптические свойства одноосных кристаллов
- •§ 99. Двухосные кристаллы
- •§ 100. Двойное преломление в электрическом поле
- •§ 101. Магнитооптические эффекты
- •§ 102. Динамооптические явления
- •Pfffi р 1
- •Глава XII
- •§ 103. Пространственная дисперсия
- •§ 104. Естественная оптическая активность
- •§ 105. Пространственная дисперсия в оптически неактивных средах
- •§ 106. Пространственная дисперсия вблизи линии поглощения
- •Глава XIII
- •§ 107. Преобразование частот в нелинейных средах
- •§ 108. Нелинейная проницаемость
- •§ 109. Самофокусировка
- •§111. Сильные электромагнитные волны
- •§112. Вынужденное комбинационное рассеяние
- •Глава XIV
- •§ 113. Ионизационные потери быстрых частиц в веществе. Нерелятивистский случай
- •§ 114. Ионизационные потери быстрых частиц в веществе. Релятивистский случай
- •§ 115. Излучение Черенкова
- •§ 116. Переходное излучение
- •Глава XV
- •§ 117. Общая теория рассеяния в изотропных средах
- •§ 118. Принцип детального равновесия при рассеянии
- •§ 119. Рассеяние с малым изменением частоты
- •§ 120. Рэлеевское рассеяние в газах и жидкостях
- •§ 121. Критическая опалесценция
- •§ 122. Рассеяние в жидких кристаллах
- •§ 123. Рассеяние в аморфных твердых телах
- •§123] Рассеяние в аморфных твердых телах 595
- •§ 124. Общая теория дифракции рентгеновых лучей
- •§ 125. Интегральная интенсивность
- •§ 126] Диффузное тепловое рассеяние рентгеновых лучей
- •§ 126. Диффузное тепловое рассеяние рентгеновых лучей
- •§ 127. Температурная зависимость сечения дифракции
§ 69. Магнитогидродинамические волны
Рассмотрим распространение малых возмущений в однородной проводящей среде, находящейся в однородном постоянном магнитном поле Н0. При этом будем рассматривать жидкость как идеальную, т. е. пренебрежем всеми процессами диссипации в нейх).
Исходим из системы магнитогидродинамических уравнений (65,1—4). Уравнение же адиабатичности (65,6) означает лишь, что, если невозмущенная среда однородна, то и в возмущенной среде будет s = const, т. е. движение изэнтропично.
Полагаем
H = H0 + h, р = р0 + р', р = р0 + р';
где индексом 0 отмечены постоянные равновесные значения величин, a h, р', Р'—их малые изменения в волне. Малой того же порядка является и скорость v, равная нулю в равновесии. Ввиду изэнтропичности движения изменения плотности и давления связаны друг с другом равенством
Р' = и!р',
где и\ = (dP/dp)s — квадрат обычной скорости звука в данной среде. Пренебрегая в уравнениях (65,1—4) малыми величинами порядка выше первого, получим следующую систему линейных уравнений:
divh = 0, ^- = rot[vh], ^- + pdivv = 0,
5T = -TVP -^[Hroth].
Здесь и ниже для краткости обозначений индекс 0 у равновесных значений величин опускается.
Ищем решение этих уравнений в виде плоской волны coei(-kT~at\ Тогда система (69,1) сводится к системе алгебраических уравнений
—coh = [k[vH]], cop' = pkv,
■ и\ i * 1 rHrilill (69,2)
*)
Условие допустимости такого пренебрежения
состоит в малости коэф> фициента
затухания волн, который вычислен в
задаче к этому naDaroacbv.
(равенство же kh = 0, следующее из divh = 0, выполняется автоматически и может отдельно не рассматриваться).
Первое из уравнений (69,2) показывает, что вектор h перпендикулярен к волновому вектору, направление которого выберем в качестве оси х. Плоскость же, проходящую через к и Н, выберем в качестве плоскости ху. Кроме того, введем фазовую скорость волны u = a>lk. Исключив р' из третьего уравнения с помощью второго и переписав уравнения в компонентах, получим следующую систему:
uhy = vxHy-vyHx, uvy=~-^-hy,
2 \ H (69,4)
uhz = — vzHx, uvz = — j^hz, (69,3)
j
4лр
к 4лр У
Мы разбили здесь уравнения на две группы, из которых первая содержит только переменные hz, vz, а вторая—только пу, vx, v . Отсюда следует, что возмущения этих двух групп переменных распространяются независимо друг от друга. Что касается возмущений плотности (а с нею и давления), то они распространяются вместе с возмущениями hy, vx, vy, будучи связаны с vx соотношением
Р'= (69,5)
Условие совместности двух уравнений (69,3) дает
« = -L^L = «a (69,6)
У 4лр
(ниже будем считать, что Нх > 0 и опускать знак модуля). В этих волнах испытывает колебания компонента hz магнитного поля, перпендикулярная к направлению распространения волны и направлению постоянного поля Н. Вместе с hz колеблется скорость vg, связанная с hz посредством
v°=-vW- (69'7)
Связь между со и к (закон дисперсии), даваемая формулой (69,6), существенно зависит от направления волнового вектора
ю=74=гнк- (ад
Физической же скоростью распространения волн является групповая скорость — производная dco/dk. В данном случае она равна
дк
У~4лр
(69,9)
