3. Компенсирующие устройства
Батареи статических конденсаторов (БК) могут работать лишь как источники реактивной мощности. Их выпускают на различные номинальные напряжения и мощности. БК на напряжение до 1000 В обычно включаются по схеме треугольника, так как при этом к конденсатору приложено линей-ное напряжение и в три раза увеличивается реактивная мощность по сравнению с соединением в звезду:
где
Uл
- линейное напряжение сети; С
- емкость трех фаз батарей;
- угловая частота.
Достоинства БК: 1) малые удельные потери активной мощности (0,0025-0,005 Вт/вар); 2) простота производства монтажных работ (малые габариты, масса, отсутствие фундаментов); 3) простота эксплуатации (ввиду отсутствия вращающихся и трущихся частей); 4) возможность их установки в центре реактивных нагрузок или около электроприемников; 5) для установки конденсаторов может быть использовано любое сухое помещение; 6) возможность постепенного увеличения мощности БК.
Недостатки БК: 1) зависимость генерируемой РМ от напряжения; 2) недостаточная прочность, особенно при КЗ и перенапряжениях; 3) малый срок службы; 4) пожароопасность; 5) наличие остаточного заряда; 6) перегрев при повышении напряжения и наличии в сети высших гармоник, ведущих к повреждению конденсаторов; 7) сложность регулирования РМ (РМ регулируется ступенчато).
Для плавного регулирования реактивной мощности применяются непосредственные преобразователи частоты (НПЧ). Такой компенсатор представляет собой нерегулируемый генератор высокой частоты, включенный через НПЧ (рис. 16.5, а).
В зависимости от соотношения напряжений сети иа, иb, ис и напряжений на выходе НПЧ иаl, иbl, исl компенсатор может генерировать или потреблять реактивную мощность. При этом от генератора высокой частоты реактивная мощность в любом случае потребляется. Учитывая это, в качестве генератора можно использовать статическое устройство, содержащее LC-контуры (рис. 16.5, б). Так как конденсаторы в рассматриваемом компенсаторе работают на высокой частоте, он имеет некоторое преимущество по габаритным размерам и стоимости по сравнению с другими типами компенсаторов.
В качестве источников реактивной мощности для прямой компенсации также используются компенсаторы с искусственной коммутацией тиристоров. Такой компенсатор представляет собой параллельное соединение двух трехфазных преобразователей. Изменение знака угла управления тиристоров достигнуто искусственной коммутацией тока в вентильных контурах напряжениями коммутирующих конденсаторов, а не напряжением сети.
Косвенная компенсация реактивной мощности заключается в том, что параллельно нагрузке включается стабилизатор реактивной мощности, обеспечивающий неизменную величину суммарной реактивной мощности
QΣ = Qн(t) + Qст(t) = const, (16.27)
где Qн(t) – реактивная мощность нагрузки; Qст(t) – реактивная мощность стабилизатора.
Рис. 16.5. Установка прямой компенсации реактивной мощности с непосредственным преобразователем частоты (а), с непосредственным преобразователем частоты и LC-контурами (б)
Суммарная реактивная мощность QΣ компенсируется с помощью БК. В качестве стабилизаторов в настоящее время используются тиристорные компенсаторы реактивной мощности.
Наиболее широкое распространение получили компенсаторы с фазоуправляемыми тиристорными ключами. На рис. 16.6, а представлена схема однофазного тиристорного фазоуправляемого ключа. Угол управления а изменятся в пределах от 0 до π/2.
Если допустить, что активное сопротивление реактора равно нулю, то для интервала проводимости тиристоров можно записать
отсюда ток через индуктивность
где
Рис. 16.6. Схема фазоуправляемого тиристорного регулятора (а), кривые тока i(t), напряжения u(t) при угле управления α ≠ 0 (б)
Ток компенсатора при угле управления α ≠ 0 становится несинусоидальным. Кривые тока i(t), напряжения u(t) компенсатора при угле управления α ≠ 0 приведены на рис. 16.6, б.
