
- •1.1 История создания солнечной батареи
- •1.2 Принцип действия солнечной батареи
- •Микроэлектроника[править | править исходный текст]
- •Электромобили[править | править исходный текст]
- •Энергообеспечение зданий[править | править исходный текст]
- •Smart Energy Glass – умные окна с фотоэлектрическим покрытием
- •Энергосберегающие решения: электрохромные окна
- •Новое поколение технологий солнечной энергии
- •Первые "солнечные электрозаправки" Toyota заработают в 2010 г.
- •Продажа гибридных Prius с подзарядкой от сети начнётся в 2011 г.
- •Преимущества[править | править исходный текст]
- •Недостатки[править | править исходный текст]
- •Сравнение с гибридными автомобилями[править | править исходный текст] Преимущества[править | править исходный текст]
- •Недостатки[править | править исходный текст]
- •Различные варианты реализации электромобиля[править | править исходный текст] Электромобили, оснащенные аккумуляторными батареями[править | править исходный текст]
- •Электромобили, оснащенные топливными элементами[править | править исходный текст]
- •Комбинированные энергоустановки[править | править исходный текст]
- •Электромобили, использующие другие источники энергии[править | править исходный текст]
- •Электромобили на солнечных батареях[править | править исходный текст]
- •Производство и эксплуатация[править | править исходный текст] Инфраструктура зарядки электромобилей[править | править исходный текст]
- •Современное применение[править | править исходный текст]
- •Применение[править | править исходный текст]
- •В России[править | править исходный текст]
- •Солнечные башни[править | править исходный текст]
- •Параболоцилиндрические концентраторы[править | править исходный текст]
- •Параболические концентраторы[править | править исходный текст]
- •Описание товара:
- •Ветроэнергетика
- •В России[править | править исходный текст]
- •Современные методы генерации электроэнергии из энергии ветра[править | править исходный текст]
- •Статистика по использованию энергии ветра[править | править исходный текст]
- •Экономические аспекты ветроэнергетики[править | править исходный текст]
- •Экономия топлива[править | править исходный текст]
- •Себестоимость электроэнергии[править | править исходный текст]
- •Экономика ветроэнергетики в России[править | править исходный текст]
- •Другие экономические проблемы[править | править исходный текст]
- •Экономика малой ветроэнергетики[править | править исходный текст]
- •Шум[править | править исходный текст]
- •Низкочастотные вибрации[править | править исходный текст]
- •Обледенение лопастей[править | править исходный текст]
- •Ветряные электростанции в зоне централизованного энергоснабжения[править | править исходный текст]
- •Ветряные электростанции в зоне децентрализованного энергоснабжения[править | править исходный текст]
- •Прочие ветряные электростанции[править | править исходный текст]
- •Биотопливо
- •Виды топлив[править | править исходный текст]
- •Биотопливо второго поколения[править | править исходный текст]
- •Биотопливо третьего поколения[править | править исходный текст]
- •Критика[править | править исходный текст]
- •Биотопливо в Европе[править | править исходный текст]
- •Биотопливо в России[править | править исходный текст]
- •Экономический эффект[править | править исходный текст]
- •Потенциал[править | править исходный текст]
- •Безплотинная гидроэлектростанция н.Ленёва. Волшебные 45°
- •Немецкий квартал вобан (vauban) во фрайбурге
- •Район эко-виикки (eco-viikki) в финляндии
- •Исследовательский центр компании rockwool в дании
- •Greenlighthouse в копенгагене
Производство и эксплуатация[править | править исходный текст] Инфраструктура зарядки электромобилей[править | править исходный текст]
Основная статья: Инфраструктура зарядки электромобилей
Современное применение[править | править исходный текст]
2011 Chevrolet Volt
Электромобиль Reva NXR (Индия) ~9,995 евро
Электромобиль для коротких (до 40 км) поездок — NEV от Dynasty IT
Электроцикл украинского производства
В 2004 году в США эксплуатировалось 55852 электромобиля. Кроме этого, в США эксплуатируется большое количество самодельных электромобилей. Наборы комплектующих для конвертации автомобиля в электромобиль продаются в магазинах.
Мировой лидер по производству электрического транспорта — Китай.
Помимо этого, небольшие электромобили упрощённой конструкции (электрокары, электропогрузчики и т. д.) широко применяются для перевозки грузов на вокзалах, в цехах и больших магазинах, а также как аттракцион. В данном случае все недостатки в виде малого запаса хода и скорости, высокой собственной стоимости батарей и массы, перекрываются преимуществами: отсутствием вредных выхлопов и шума, что принципиально важно для работы в закрытых людных помещениях. Формально к электромобилям такие машины относить не принято из-за специфичности их применения.
Основной фактор, сдерживающий массовое производство электромобилей, — малый спрос, обусловленный высокой стоимостью и малым пробегом от одной зарядки[13]. Существует точка зрения, что широкое распространение электромобилей сдерживается дефицитом аккумуляторов и их высокой ценой. Для разрешения этих проблем многие автопроизводители создали совместные предприятия с производителями аккумуляторов. Например, Volkswagen AG создал совместное предприятие с Sanyo Electric, Nissan Motor с NEC Corporation, и т. д.
Солнечный коллектор — устройство для сбора тепловой энергии Солнца (гелиоустановка), переносимой видимым светом и ближниминфракрасным излучением. В отличие от солнечных батарей, производящих непосредственно электричество, солнечный коллектор производит нагрев материала-теплоносителя.
Применение[править | править исходный текст]
Солнечный водонагреватель на жилом доме. Мальта.
Солнечные коллекторы применяются для отапливания промышленных и бытовых помещений, для горячего водоснабжения производственных процессов и бытовых нужд. Наибольшее количество производственных процессов, в которых используется тёплая и горячая вода (30—90 °C), проходят в пищевой и текстильной промышленности, которые таким образом имеют самый высокий потенциал для использования солнечных коллекторов.
В Европе в 2000 году общая площадь солнечных коллекторов составляла 14,89 млн м², а во всём мире — 71,341 млн м².
Солнечные коллекторы — концентраторы могут производить электроэнергию с помощью фотоэлектрических элементов или двигателя Стирлинга.
Солнечные коллекторы могут использоваться в установках для опреснения морской воды. По оценкам Германского аэрокосмического центра (DLR) к 2030 году себестоимость опреснённой воды снизится до 40 евроцентов за кубический метр воды[3]