
- •Основные сведения из истории развития электроники.
- •Электропроводность полупроводников.
- •Удельная проводимость пп
- •Примесная проводимость
- •Зонная диаграмма пп с донорной примесью
- •Зонная диаграмма пп с акцепторной примесью
- •Понятие о потенциале и уровне Ферми для пп материалов.
- •Электрические переходы между двумя различными материалами
- •Электрические переходы между металлом и пп.
- •Процессы в p-n-переходе.
- •Прямое смещение pn перехода.
- •Обратное смещение pn перехода.
- •Вах pn-перехода
- •Емкость pn- перхода
- •Пробой pn перхода.
- •Устройство: принцип действия и вах полупроводникового диода.
- •Классификация и система обозначения Диодов
- •Устройство, принцип действия и вах стабилитрона.
- •Классификация и система обозначения стабилитронов.
- •Биполярный транзистор: устройство, принцип действия.
- •Типы транзисторов: устройство, принцип действия.
- •Схемы включения транзисторов.
- •Основные соотношения для токов в структуре
- •Математическая модель транзистора.
- •Уравнения Эберса-Молла
- •Эквивалентная схема транзистора для постоянного тока об: основные соотношения и характеристики
- •Эквивалентная схема транзистора для постоянного тока оэ: основные соотношения и характеристики
- •Базовые характеристики биполярного транзистора, включенного по схеме об.
- •Выходные характеристики биполярного транзистора, включенного по схеме об.
- •Базовые характеристики биполярного транзистора, включенного по схеме оэ.
- •Выходные характеристики биполярного транзистора, включенного по схеме оэ.
- •Основные режимы работы биполярного транзистора
- •Биполярный транзистор как активный 4-х полюсник
- •H-параметры для биполярного транзистора, характеристики, и способ определения.
- •Основные параметры биполярного транзистора.
- •Эквивалентные схемы биполярных транзисторов для переменного тока.
- •Зависимость основных параметров биполярного транзистора от температуры.
- •Классификация и система обозначения биполярных транзисторов.
- •Структура и принцип работы полевого транзистора с управляемым p-n переходом
- •Основные характеристики полевого транзистора с управляемым p-n переходом
- •Основные параметры полевого транзистора с управляемым p-n переходом
- •Соотношения между параметрами полевого транзистора с управляемым p-n переходом
- •Эквивалентные схемы полевого транзистора для переменного тока.
- •Основные схемы включения полевого транзистора
- •Зависимость параметров полевого транзистора с управляющим p-n переходом от температуры
- •Моп-транзисторы: структура и принцип действия
- •Моп-транзистор с индуцированным каналом
- •Моп-транзистор со встроенным каналом
- •Стоко-затворные характеристики моп транзисторов с индуцированным каналом
- •Статические стоковые характеристики моп-транзисторов с индуцированным каналом
- •Влияние потенциала подложки на характеристики управления моп-транзистора
- •Структура мноп: принцип действия и область использования.
- •Моп-транзистор с плавающим затвором: принцип действия и область применения.
- •Классификация, система обозначения и характеристики полевого транзистора
- •Структура, принцип действия и вах туннельного диода
- •Структура, принцип действия и вах двухбазового диода
- •Основные соотношения для токов и напряжений однопереходного транзистора
- •Транзисторный аналог двухбазового диода.
- •Лавинный транзистор: схема включения и основные параметры
- •Вах лавинного транзистора, область использования
- •Динистор: структура и принцип действия
- •Динистор: вах , основные соотношения для токов
- •Тиристор: структура, принцип действия
- •Тиристор: вах при управлении по катоду, и основные соотношения для токов
- •Классификация и система обозначений тиристоров.
- •Основные достоинства оптоэлектронных приборов
- •Светодиоды: принцип действия, основные характеристики, эквивалентные схемы
- •Основные параметры светодиодов
- •Основные параметры и характеристика фоторезисторов
- •Фотодиоды: структура, принцип действия, основные режимы работы
- •Основные параметры и характеристики фотодиодов
- •Фототранзисторы: принцип действия, основные режимы
- •Основные характеристики и параметры фототранзисторов.
- •Фоторезисторы: структура, классификация, основные параметры
- •Устройства отображения информации: назначение, классификация.
- •Принцип действия и способы управления вакуумными люминесцентными индикаторами.
- •Устройство, принцип действия и область использования жидко-кристаллических индикаторов (жки)
- •Разновидности и способы управления ими
- •Пп знакосинтезирующие индикаторы: устройство, принцип действия
- •Многоэлементные пп зси устройство, область использования.
- •Принцип работы лазера, свойства лазерного излучения
- •Основные типы лазеров, основные области использования лазерного излучения
- •Пп приборы с зарядовой связью: устройство, принцип действия, режимы работы, область применения
- •Усилители электрических сигналов: основные параметры и характеристики
- •Принцип действия усилительного каскада на транзисторе
- •Усилительный каскад на транзисторе, включенном по схеме оэ
- •Определение коэффициентов усиления тока и напряжения в схеме каскада оэ
- •Температурная компенсация каскада оэ
- •Эмиттерный повторитель: схемы и основные соотношения.
- •Определение коэффициентов усиления тока и напряжения в схеме ок
- •Усилительный каскад с общей базой (об схема и основные соотношения)
- •Усилительные каскады на полевых транзисторах: схемы и основные соотношения
- •Истоковый повторитель: схема и основные соотношения
- •Режимы усилительных каскадов
- •Графо-аналитический анализ работы усилительного каскада
Примесная проводимость
Установлено, что электропроводность существенно зависит от примесей (акцепторной и донорной). Название этих примесей определяется каким образом замещаются атомы кристаллической решетки.
Валентность примеси меньше, чем у основного материала (Ge + In). В этом случае, чтобы образовать кристаллическую решетку индий «отбирает» электрон у германия. Отметим, что индий отбитая электрон связывает германий в ковалентную связь и образуется дырка, те положительно заряженный германий. Такой вид примеси называется акцепторный. Электропроводность — дырочная, а ПП p- типа.
Валентность примеси больше валентности основного материала (Ge + Сурьма). В этом случае появляется свободный электрон, связи ковалентные. Донорная примесь. Электропроводность — электронная, а ПП n- типа.
Зонная диаграмма пп с донорной примесью
Валентность примеси больше валентности основного материала (Ge + Сурьма). В этом случае появляется свободный электрон, связи ковалентные. Донорная примесь. Электропроводность — электронная, а ПП n- типа.
Eс — уровень энергии дна зоны проводимости
Еv — уровень энергии потолка зоны проводимости
Ед — уровнь энергии донорной примеси.
Зонная диаграмма пп с акцепторной примесью
Валентность примеси меньше, чем у основного манериала (Ge + In). В этом случае, чтобы образовать кристаллическую решетку индий «отбирает» электрон у германия. Отметим, что индий отбитая электрон связивает германий в ковалентную связь и образуется дырка, те положительно заряженый германий. Такой вид примеси называется акцепторный. Электропроводность — дырочная, а ПП p- типа.
Eс — уровень энергии дна зоны проводимости
Еv — уровень энергии потолка зоны проводимости
Еа — уровнь энергии акцепторной примеси.
Понятие о потенциале и уровне Ферми для пп материалов.
В теории ПП
взаимодействия и св-ва зарядов
характеризуется не самой энергией, а
потенциалом.
В расчетах появляется температурный
потенциал
,
гдеk
— постоянная Больцмана; T
— абсолютная температура.
n*p = const при T=const и зависит от ширины ЗЗ
обычно используется потенциал уровня Ферми.
Nd – концентрация донорной примеси
ni — собственная концентрация зарядов.
Na — концентрация акцепторной примеси
pi — собственная концентрация дырок
phi_p — электростатический потенциал (в середине ЗЗ)
Уровень энергии зависит от концентрации примеси и собственной концентрации.
Электрические переходы между двумя различными материалами
Это граничный слой между двумя областями материалов физические характеристики которых различны.
Переходы могут быть pn- переходы (электронно-дырочные); n+n- переходы (электронно-электронные, с различными концентрациями); p+p (гетеропереходы имеют различную ширину ЗЗ); p-i (проводимость в одной зоне собственная а в другой примесная); n-i; p-i-n; металл-ПП.
Электрические переходы образуются не механическим соединением, а по специальным технологиям
Электрические переходы между металлом и пп.
Это граничный слой между двумя областями материалов физические характеристики которых различны.
При образовании
перехода металл-ПП происходит процесс
выравнивания уровня Ферми за счет того,
что потенциал
электроны
переходят в область проводимости, там
рекомбинируют с дырками и образуют слой
положительных ионов.
Процесс будет идти до тех пор пока не уровняются уровни Ферми и установится динамическое равновесие, результирующий ток равен нуню.
Отметим, что образовавшиеся электрическое поле препятствует прохождению основных зарядов.
В ПП в области перехода концентрация дырок уменьшится, а следовательно этот элемент имеет повышенное сопротивление.
Два варианта включения в цепь: прямое и обратное.
Внешнее электрическое поле направленно на встречу внутреннему, происходит ослабление преграды ток в цепи увеличивается.
Внешнее поле складывается со внутренним увеличивается преграда тог падает.
В результате анализа опыта можно обнаружить, что в первом случае ток проходит беспрепятственно, а во втором ток не будет проходить, т.е. обнаружена односторонняя проводимость.
Для практики особенно важно когда уровень Ферми металла меньше уровня Ферми ПП p- типа, или выше ПП n- типа. В этом случае наружный заряд обогащается и сопротивление понижается.