
- •Глава 1. Основы коммутации
- •1.1 Эволюция локальных сетей
- •1.2 Функционирование коммутаторов локальной сети
- •1.3 Методы коммутации
- •1.4 Конструктивное исполнение коммутаторов
- •1.5 Физическое стекирование коммутаторов
- •1.6 Типы интерфейсов коммутаторов
- •1.7 Архитектура коммутаторов
- •1.7.1 Архитектура с разделяемой шиной
- •1.7.2 Архитектура с разделяемой памятью
- •1.7.3 Архитектура на основе коммутационной матрицы
- •1.8 Характеристики, влияющие на производительность коммутаторов
- •1.8.1 Скорость фильтрации и скорость продвижения кадров
- •1.8.2. Размер таблицы коммутации
- •1.8.3. Объем буфера кадров
- •1.9. Управление потоком в полудуплексном и дуплексном режимах
- •1.10. Технологии коммутации и модель osi
- •1.11. Программное обеспечение коммутаторов
- •1.12. Общие принципы сетевого дизайна
- •1.13 Трехуровневая иерархическая модель сети
- •Глава 2. Начальная настройка коммутатора
- •2.1 Классификация коммутаторов по возможности управления
- •2.2. Средства управления коммутаторами
- •2.3. Подключение к коммутатору
- •2.3.1. Подключение к консоли интерфейса командной строки коммутатора
- •2.4 Начальная конфигурация коммутатора
- •2.4.1. Вызов помощи по командам
- •2.4.2. Базовая конфигурация коммутатора
- •2.5. Подключение к Web-интерфейсу управления коммутатора
- •2.6. Загрузка нового программного обеспечения на коммутатор
- •2.7. Загрузка и резервное копирование конфигурации коммутатора
- •Глава 3. Обзор функциональных возможностей коммутаторов
- •Глава 4. Виртуальные локальные сети (vlan)
- •4.1 Типы vlan
- •4.2 Vlan на основе портов
- •4.3. Vlan на основе стандарта ieee 802.1q
- •4.3.1 Некоторые определения ieee 802.1q
- •4.3.2. Теги vlan 802.1q
- •4.3.4. Продвижение кадров vlan 802.1q
- •4.3.5. Пример настройки vlan 802.1q
- •4.4. Статические и динамические vlan
- •4.5. Протокол gvrp
- •4.5.1 Таймеры gvrp
- •4.5.2. Пример настройки протокола gvrp
- •4.6.1. Формат кадра q-in-q
- •4.6.2 Реализации q-in-q
- •4.6.3 Значения tpid в кадрах q-in-q vlan
- •4.6.4 Роли портов в Port-based q-in-q и Selective q-in-q vlan
- •4.6.5. Политики назначения внешнего тега и приоритета в q-in-q vlan
- •4.6.6. Базовая архитектура сети с функцией Port-based q-in-q
- •4.6.7. Пример настройки функции Port-based q-in-q
- •4.6.8. Пример настройки функции Selective q-in-q
- •4.7. Vlan на основе портов и протоколов – стандарт ieee 802.1v
- •4.7.1 Пример настройки ieee 802.1v vlan
- •4.8 Асимметричные vlan
- •4.8.1. Примеры настройки асимметричных vlan
- •4.9. Функция Traffic Segmentation
- •4.9.1 Примеры использования и настройки функции Traffic Segmentation
- •Глава 5. Функции повышения надежности и производительности
- •5.1 Протоколы Spanning Tree
- •5.2.1. Понятие петель
- •5.2.2. Построение активной топологии связующего дерева
- •5.2.4 Состояния портов
- •5.2.5 Таймеры stp
- •5.2.6 Изменение топологии
- •5.2.8. Настройка stp
- •5.3.1 Роли портов
- •5.3.2. Формат bpdu
- •5.3.3. Быстрый переход в состояние продвижения
- •5.3.4 Механизм предложений и соглашений
- •5.3.5 Новый механизм изменения топологии
- •1. Определение изменений топологии.
- •2. Распространение информации об изменении топологии.
- •5.3.6 Стоимость пути rstp
- •5.3.7. Совместимость с stp
- •5.3.8. Настройка rstp
- •5.4.1 Логическая структура mstp
- •5.4.3. Формат mstp bpdu
- •5.4.4 Вычисления в mstp
- •5.4.5 Роли портов mstp
- •5.4.6 Пример топологии mstp
- •5.4.7 Состояние портов mstp
- •5.4.8 Счетчик переходов mstp
- •5.4.9 Совместимость с stp и rstp
- •5.4.10 Настройка протокола mstp на коммутаторах
- •5.5 Дополнительные функции защиты от петель
- •5.5.1 Настройка функции LoopBack Detection
- •5.6 Функции безопасности stp
- •5.7 Агрегирование каналов связи
- •5.7.1 Настройка статических и динамических агрегированных каналов
- •Глава 6. Качество обслуживания (QoS)
- •6.1. Модели QoS
- •6.2. Приоритезация пакетов
- •6.3. Классификация пакетов
- •4 Очереди приоритетов
- •8 Очередей приоритетов
- •6.4. Маркировка пакетов
- •6.5. Управление перегрузками и механизмы обслуживания очередей
- •6.6. Механизм предотвращения перегрузок
- •6.7 Контроль полосы пропускания
- •6.8 Пример настройки QoS
- •Глава 7. Функции обеспечения безопасности и ограничения доступа к сети
- •7.1 Списки управления доступом (acl)
- •7.1.1 Профили доступа и правила acl
- •7.1.2 Примеры настройки acl
- •7.2 Функции контроля над подключением узлов к портам коммутатора
- •7.2.1 Функция Port Security
- •7.2.1.1 Пример настройки функции Port Security
- •7.2.2 Функция ip-mac-Port Binding
- •7.2.2.1 Пример настройки функции ip-mac-Port Binding
- •7.3 Аутентификация пользователей 802.1x
- •7.3.1 Роли устройств в стандарте 802.1х
- •7.3.4. Состояние портов коммутатора
- •7.4.1. Пример настройки 802.1х Guest vlan
- •7.5 Функции защиты цпу коммутатора
- •7.5.1 Функция Safeguard Engine
- •7.5.1.1 Пример настройки функции Safeguard Engine
- •7.6.1 Функция cpu Interface Filtering
- •7.6.1.1 Пример настройки функции cpu Interface Filtering
- •Глава 8. Многоадресная рассылка
- •8.1 Адресация многоадресной ip-рассылки
- •8.3 Подписка и обслуживание групп
- •8.4 Управление многоадресной рассылкой на 2-м уровне модели osi (igmp Snooping)
- •8.4.1 Пример настройки igmp Snooping
- •8.5 Функция igmp Snooping Fast Leave
- •8.5.1. Пример настройки igmp Snooping Fast Leave
- •Глава 9. Функции управления коммутаторами
- •9.1 Управление множеством коммутаторов
- •9.1.1. Объединение коммутаторов в физический стек
- •9.1.2 Виртуальный стек. Технология Single ip Management (sim)
- •9.2 Протокол snmp
- •9.2.1 Компоненты snmp
- •9.2.2 База управляющей информации snmp
- •9.2.3 Типы сообщений протокола snmp
- •9.2.4 Безопасность snmp
- •9.2.5 Пример настройки протокола snmp
- •9.4 Функция Port Mirroring
- •Глава 10. Обзор коммутаторов d-Link
- •10.1 Неуправляемые коммутаторы
- •10.2 Коммутаторы серии Smart
- •10.3 Управляемые коммутаторы
4.5. Протокол gvrp
Протокол GVRP определяет способ,посредством которого коммутаторы обмениваются информацией о сети VLAN, чтобы автоматически зарегистрировать членов VLAN на портах во всей сети. Он позволяет динамически создавать и удалять VLAN стандарта IEEE 802.1Q на магистральных портах, автоматически регистрировать и исключать атрибуты VLAN (под регистрацией VLAN подразумевается включение порта в VLAN , под исключением – удаление порта из VLAN).
Протокол GVRP использует сообщения GVRP BPDU (GVRP Bridge Protocol Data Units), рассылаемые на многоадресный МАС-адрес 01-80-C2-00-00-21 для оповещения устройств-подписчиков о различных событиях. Оповещения (advertisement) могут содержать информацию о выполнении следующих действий:
· Join message – регистрация порта в VLAN.
JoinEmpty : VLAN на локальном подписчике не настроена;
JoinIn : VLAN на локальном подписчике зарегистрирована.
· Leave message – удаление VLAN с конкретного порта.
LeaveEmpty : VLAN на локальном подписчике не настроена;
LeaveIn : VLAN на локальном подписчике удалена.
· Leave message – удаление всех, зарегистрированных на порте VLAN . Это сообщение отправляется после того, как истечет время, заданное таймером LeaveAll Timer .
· Empty message – требование повторного динамического оповещения и статической настройки VLAN .
4.5.1 Таймеры gvrp
· Join Timer – время в миллисекундах (100-100000), через которое отправляются сообщения JoinIn или JoinEmpty. Определяет промежуток времени между моментом получения коммутатором информации о вступлении в VLAN и фактическим моментом вступления в VLAN. По умолчанию установлено значение 200 миллисекунд.
· Leave Timer – когда коммутатор получает сообщение об исключении порта из VLAN (Leave message) от другого подписчика GVRP , он ожидает заданный период времени (от 100 до 100000 миллисекунд), определяемый таймером Leave Timer, чтобы убедиться, что информация о данной VLAN больше не существует в сети. Например, когда коммутатор получает сообщение Leave,он не удаляет мгновенно информацию о соответствующей VLAN, а запускает Leave Timer и ждет, когда его время истечет. Если за это время не будет получено сообщение JoinIn с информацией об удаляемой VLAN, то она будет коммутатором удалена. Обычно, значение таймера Leave Timer устанавливают в два раза больше значения таймера Join Timer. По умолчанию значение таймера равно 600 миллисекунд.
· LeaveAll Timer – интервал времени в миллисекундах (100-100000), через который отправляется сообщение LeaveAll. Когда коммутатор-подписчик GVRP получает это сообщение, он перезапускает все таймеры, включая LeaveAll Timer. Обычно значение таймера LeaveAll устанавливают в два раза больше значения таймера Leave Timer. По умолчанию значение таймера равно 10000 миллисекунд.
На рис. 4.15 показан процесс распространения информации о VLAN по сети с использованием протокола GVRP. На коммутаторе 1 созданы статические виртуальные сети VLAN v10, v20 и v30. Порт 25 является маркированным членом всех VLAN. Коммутатор 1 отправляет оповещение о VLAN v 30 через порт 25 коммутатору 2 (сообщение JoinEmpty). Коммутатор 2 получает это оповещение, динамически создает VLAN v30 и включает в нее порт 25. Порт 26 коммутатора 2 отправляет оповещение о VLAN v30 коммутатору 3 (сообщение JoinEmpty), но сам не становится членом этой VLAN .
Коммутатор 3 получает оповещение, динамически создает VLAN v30 и включает в нее порт 26. Далее коммутатор 3 изменяет состояние VLAN v30 с динамического на статическое и отправляет через порт 26 сообщение JoinIn о регистрации виртуальной сети. Коммутатор 2 получает это оповещение и регистрирует порт 26 в VLAN v30, которая уже была создана ранее. Сообщение о регистрации VLAN v30 отправляется через порт 25 коммутатору 1. Получив это сообщение, коммутатор 1 перестает рассылать оповещения о VLAN v30.
Внимание : порт с поддержкой протокола GVRP подключается к сети VLAN только в том случае, если он непосредственно получает оповещение о ней. Если порт с поддержкой протокола GVPR передает оповещение, полученное от другого порта коммутатора, он не подключается к этой сети VLAN. |
Рис.
4.15. Процесс распространения информации
о регистрации VLAN по сети
Рис. 4.16 показывает процесс распространения информации об удалении VLAN по сети. На коммутаторе 1 удалена статическая VLAN v30 и он отправляет сообщение LeaveIn через порт 25 коммутатору 2. Когда коммутатор 2 получит оповещение об удалении VLAN v30, он исключит порт 25 из этой VLAN и отправит сообщение LeaveIn коммутатору 3 через порт 26. Коммутатор 3 получит оповещение об удалении VLAN v30, но удалит ее не сразу, а по истечении периода, установленного таймером Leave Timer. После удаления VLAN v30, коммутатор 3 отправит через порт 26 сообщение LeaveEmpty .После получения этого сообщения коммутатор 2 исключит порт 26 из VLAN v30 и удалит ее по истечении периода, установленного таймером Leave Timer. Через порт 25 будет передано сообщение LeaveEmpty коммутатору 1. Коммутатор 1 исключит свой порт 25 из динамической VLAN v30.
Рис.
4.16. Процесс распространения информации
об удалении VLAN по сети