
- •Топологические параметры цепи
- •Эквивалентные преобразования электрических цепей
- •Метод эквивалентных преобразований
- •Пример применения
- •Последовательно соединенные реальная индуктивная катушка и конденсатор в цепи синусоидального тока
- •Резонансы в цепях синусоидального тока
- •Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
- •Резонанс в цепи с параллельно соединенными элементами (резонанс токов)
- •Резонанс в сложной цепи
- •20. Емкостной характер цепи синусоидального тока с параллельным соединением rlc — элементов.
- •Комплексный метод расчета цепей синусоидального тока
- •Переменный однофазный ток
- •Мощность
- •Коэффициент мощности
- •Аварийные режимы в нагрузках соединенных звездой
- •Аварийные режимы в нагрузках соединенных треугольником
- •Соединение в звезду. Схема, определения
- •Соединение в треугольник. Схема, определения
- •Соотношение между линейными и фазными токами и напряжениями.
- •Соотношения между фазными и линейными напряжениями источников. Номинальные напряжения
- •Измерение активной мощности в трехфазных цепях
- •Измерение активной мощности двумя ваттметрами
- •4.2. Магнитные цепи
- •Закон полного тока
- •Ток смещения
- •Магнитные цепи
- •9.1. Основные определения
- •9.2. Свойства ферромагнитных материалов
- •9.3. Расчет магнитных цепей
- •Общая характеристика задач и методов расчета магнитных цепей
- •Регулярные методы расчета
- •1. Прямая” задача для неразветвленной магнитной цепи
- •2. “Прямая” задача для разветвленной магнитной цепи
- •Графические методы расчета
- •1. “Обратная” задача для неразветвленной магнитной цепи
- •2. “Обратная” задача для разветвленной магнитной цепи
- •Итерационные методы расчета
- •Статическая и дифференциальная индуктивности катушки с ферромагнитным сердечником
- •Магнитные характеристики атома
- •Устройство и принцип действия трансформатора
- •2. Механическая характеристика асинхронного двигателя
- •Работа трансформатора в режиме холостого хода
- •Опыт короткого замыкания трансформатора
- •[Править]Типы
- •[Править]Принцип действия
- •[Править]Электродвигатель
- •[Править]Генератор
- •11.2. Принцип действия машины постоянного тока
- •11.3. Работа электрической машины постоянного тока в режиме генератора
- •§ 2.2. Классификация полупроводниковых материалов
- •Варисторы
- •Терморезисторы
- •Тензорезисторы
- •[Править]Основные характеристики и параметры диодов
- •[Править]Классификация диодов [править]Типы диодов по назначению
- •[Править]Типы диодов по частотному диапазону
- •[Править]Типы диодов по размеру перехода
- •[Править]Типы диодов по конструкции
- •Транзисторы
- •1.5.1 Структура транзистора
- •История создания полевых транзисторов
- •Схемы включения полевых транзисторов
- •Классификация полевых транзисторов
- •Области применения полевых транзисторов
- •]Устройство и основные виды тиристоров
- •Режимы работы триодного тиристора Режим обратного запирания
- •Режим прямого запирания
- •Двухтранзисторная модель
- •Режим прямой проводимости
- •Классификация тиристоров[2][3][4]
- •Отличие динистора от тринистора
- •Отличие тиристора триодного от запираемого тиристора
- •Симистор
- •Характеристики тиристоров
- •Оптоэлектронные приборы
- •Оптоэлектронные полупроводниковые приборы
- •3.1 Фоторезисторы
- •3.2 Фотодиод
- •3.3 Светоизлучательные диоды
- •Классификация усилителей на полупроводниковых триодах
- •Операционные усилители
- •Обозначения на схеме
- •Принцип действия
- •Операционный усилитель без отрицательной обратной связи (компаратор)
- •Операционный усилитель с отрицательной обратной связью (неинвертирующий усилитель)
- •Вторичные источники питания
- •Задачи вторичного источника питания
4.2. Магнитные цепи
Всякий электромагнит состоит из стального сердечника – магнитопровода и намотанной на него катушки с витками изолированной проволоки, по которой проходит электрический ток.
Совокупность нескольких участков: ферромагнитных (сталь) и неферромагнитных (воздух), по которым замыкаются линии магнитного потока, составляют магнитную цепь.
31 закон полного тока.
Закон полного тока
Датский физик X.Эрстед в начале 19 века определил главный в теории электромагнетизма экспериментальный факт, он заключается в следующим, протекание по проводникам электрического тока приводит к появлению в окружающем пространстве магнитного поля.
Этот факт предоставил возможность французскому выдающемуся ученому Лмперу выразить формулировкой закон, который на сегодняшний день имеет название закона полного тока.
Проанализируем рисунок ниже, воображаемый контур L в пространстве, ограничивающий поверхность S.
На этом контуре установим направление обхода так, чтобы движение с конца вектора вдоль контура элементарной площадки dS прослеживалось в направлении против часовой стрелки.
Далее
представим то, что поверхность S
пронизывается отдельной системой токов,
которая может нести как дискретный
характер (к примеру, систему отдельных
проводников), так и быть непрерывно
распределенной (электронный поток может
послужить этому примером). Не обуславливая
тем временем физической природы данных
токов, будем подразумевать для
конкретности, что они распределены
непрерывно в пространстве с кое-какой
плотностью
То теперь полный ток, пронизывающий контур, найдется в виде
Закон
полного тока говорит о том, что циркуляция
по контуру L вектора
напряженности магнитного поля,
инициированного протеканием тока
равна
полному току, то есть.
Закон полного тока формулирует соотношение выше в интегральной форме.
В том, чтобы связать плотность полного тока в данной гонке с напряженностью магнитного поля, то есть найти дифференциальную форму данного закона, надлежит употребить знаменитой теоремой Стикса из векторного анализа, которая говорит нам о том, что для каждого векторного поля А верно равенство
Использовав крайнюю формулу и перестроив с её помощью
будем располагать
откуда получим из-за произвольности выбранного контура
Формула выше несёт в себе закон полного тока в дифференциальной форме. Заметим, что при помощи закона полного тока в интегральной форме удается разрешить ряд задач, связанных по нахождению магнитного поля заданных токов.
Ток смещения
Известен из практики факт прохождения электрического переменного тока по цепи, включающий в себя конденсатор. Значительно важным тут приходится то, что ток протекает между обкладками по пространству, в котором нет каких-либо носителей электрического заряда. Вследствие чего можно предположить, что в данной области течёт некий ток, натура которого принципиально непохожа на натуры тока проводимости, ранее освоенного. Данный ток впервые был влит в электродинамику Максвеллом, а назвал он его током смещения.
Мы видим цепь с конденсатором, представленную изображением ниже, в нём выделена замкнутая поверхность S, охватывающая одну из обкладок конденсатора.
Из закона Гаусса надлежит, что если, когда между обкладками имеется вакуум,
Ток в цепи в свою очередь, найдется следующим образом:
Последнее выражение показывает, что величина
обладает размерностью плотности тока, который и должен называться током смещения.
Таким образом, плотность тока смещения в вакууме
Предложением Максвелла было введение плотности тока смещения в правую часть закона полного тока наряду плотностью тока проводимости. Данное решение оказалось довольно значительным для электродинамики, поскольку при этом становилось возможным устанавить внутреннюю взаимосвязь магнитного и электрического поля. В действительности, к протеканию тока смещения, который, в свою очередь, вызывает появление магнитного поля, приводит изменение во времени электрического поля в какой-либо точке пространства.
32 понятие о магнитных цепях.
http://www.ets.ifmo.ru/usolzev/intmod/b_7.pdf http://www.service.induction.ru/library/book_005/6_1.shtml