
- •Вопрос 1)Обыкновенные ду с постоянным коэфиц.
- •Вопрос 2)Построение частного решения методом импульсной реакции
- •Вопрос 3)переходная ф-ия интеграл Дюамеля
- •Вопрос 4) Задача Коши, двухточечная задача
- •Вопрос 5)Метод комплексных амплитуд
- •Вопрос 6)Частное решение при периодической правой части
- •Вопрос 7)Преобразование Лапласа и его применение для построения частного решения
- •Вопрос 8)Преобразование Фурье и его применение для построения частного решения.
- •Вопрос 9)Уравнение Эйлера, его базисные решения
- •Вопрос 10) Уравнение Бесселя, его базисные решения
- •Вопрос 11)Графики ф-ии бесселя,модифицированное уравнение Бесселя,графики модифицированных ф-ий Бесселя
- •Вопрос 12)Ортогональность ф-ии Бесселя,ряд Фурье Бесселя
- •Вопрос 13) Ур-ие Лежандра, полином Лежандра, их графики
- •Вопрос 14)ортогональность полиномов Лежандра
- •Вопрос 15)Присоединенные полиномы Лежандра
- •Вопрос 16)Основные ур-ия математической физики. Корректность постановки задач математической физики
- •Вопрос 17) Безвихревое стационарное обтекание тел жидкостью, газом.
- •Вопрос 18)Ур-ие теплопроводности, постановка задачи для него.
- •Вопрос 19)Ур-ие малых колебаний струны, начальные и краевые условия
- •Вопрос 20)Электростатическое поле между заряженными проводящими телами
- •Вопрос 21)Ур-ие Максвела, телеграфные ур-ия для векторов поля.
- •Вопрос 22)Ур-ие Лапласа, основные св-ва гармонических ф-ии
- •Вопрос 23)Краевые задачи для ур-ия Лапласа
- •Вопрос 24)Конечно разностная аппроксимация ур-ия Лапласса
- •Вопрос 25)Фундаментальное решение ур-ия Лапласса
- •Вопрос 26)Основное тождество гармонических ф-ий
- •Вопрос 27) Электростатическая интерпретация основного тождества
- •Вопрос 29)Единственность решения внешней задачи Дирихле и Неймана
- •Вопрос 28)Единственность решения внутренних задач Дирихле и Неймана
- •Вопрос 30) Метод Фурье общая схема
- •Вопрос 31)Разделение переменных в полярных координатах
- •Вопрос 32)Решение задач Дирихле и Неймана для круга
- •Вопрос 33)Электростатическое поле внутри и вне диэлектрического цилиндра помещенного во внешнее поле е0
- •Вопрос 34)Разделение переменных в декартовых координатах.
- •Вопрос 35) Решение задачиДирихле для прямоугольника
- •Вопрос 36)Разделение переменных в цилиндрических координатах
- •Вопрос 37)Стационарное температурное поле внутри цилиндра
- •Вопрос 38) Метод ф-ии Грина.Ф-ия Грина,задачи дирихле
- •Вопрос 39)Приближенное построение ф-ии Грина
- •Вопрос 40)ф-ия Грина задачи Неймана,её св-ва
- •Вопрос 41)Решение задачи Дирихле для полупространства.
- •Вопрос 42)Решение задачи Дирихле для круга
- •Вопрос 43) Плоские гармонические векторные поля и методы их исследования.
- •Вопрос 44) Метод комфортных отображений. Интеграл Пуассона для полуплоскости.
- •Вопрос 47)Ур-ие Лапласса и вариационный принцип Дирихле
- •Вопрос 48) Метод Ритца
- •Вопрос 49)Методы взвешенных невязок,метод коллокации
- •Вопрос 50)Метод наименьших квадратов
- •Вопрос 51)Метод Галёркина
- •Вопрос 52)Граничные интегральные ур-ия.Решение задачи Дирихле Методом гиу
- •Вопрос 53)Решение задачи Неймана методом гиу
- •Вопрос 54)Теорема Фредгольма
- •Вопрос 1)Потенциалы простого и двойного слоев. Теорема о потенциале простого слоя
- •Вопрос 2)Теорема о потенциале двойного слоя
- •Вопрос 3)Применение потенциалов для решения краевых задач для ур-ия Лапласа. Задача Робэна
- •Вопрос 5)Решение задачи Неймана методом иу
- •Вопрос 6)Решение задачи Дирихле методом иу
- •Вопрос 7) Решение ур-ия Пуассона,теорема об объемном потенциале
- •Вопрос 8)Ур-ие диффузии,постановка начально-краевых задач для него
- •Вопрос 9) Теорема единствености реш-я начальн краев. Задач для ур-я диффузии
- •Вопрос 10) Метод конечных разностей для ур-я диффузии
- •Вопрос 11) Метод установления для ур-я Лапласа. Эволюц. Метод
- •Вопрос 12) Метод разделения переем. (Фурье) для ур-я диффузии.
- •Вопрос 13) Примен. Преобр-я Лапласа для реш. Ур-я дифф
- •Вопрос 14) Прогревание полупространства. Задача Релея.
- •Вопрос 15) Интеграл Дюамеля.
- •Вопрос 20) Фундамент р-ние ур-ния тепло-сти в своб. Пр-ве
- •Вопрос31 ) Решение неоднородного волнового ур-ния. Запаздывающий интеграл.
- •Вопрос 29)Волны в полуограниченной струне.
- •Вопрос 17) Расчет критических размеров при цепных реакциях
- •Вопрос 46) Решение задачи Дирихле для полосы
- •Вопрос 45)Решение задачи Дирихле для круга.
- •Вопрос 16)Температурные волны.
- •Вопрос 18)Интегродифференциальные ур-ния начальных краевых задач для ур-ия диффузии.
- •Вопрос 19) Скин эффект в проводнике произвольного сечения.
- •Вопрос 20)Фундамент р-ние ур-ния тепло-сти в своб. Пр-ве.
- •Вопрос 35)свободны колебания прямоугольной мембраны
- •Вопрос 36)Рассчитать свободные колебания круглой мембраны радиуса b, обусловленной не нулевым начальным отклонением и начальной скоростью. Повторить все в полярных координатах
- •Вопрос 37)Сведения начально-краевой задачи для волнового ур-ия к интегро-диференц. Ур-ию
- •Вопрос 40) Электро магнитные колебания в объемном резонаторе
- •Вопрос 41)Метод конечностных разностей для волнового ур-ия
- •Вопрос 21) Задача Коши для однородного уравнения теплопроводности
- •Вопрос 22) Цилиндрически и сферически симметричное решение уравнения теплопроводности
- •Вопрос 23) Волновое уравнение
- •Вопрос 24)Интеграл энергии и теорема единственности решения начально краевых задач для струны
- •Вопрос 30)Сферические волны.
- •Вопрос 33) Колебания в ограниченных объемах.
- •Вопрос 25) Эл. Колебания в длин линии.
- •Вопрос 26) эм колеб-ия в объемном резонаторе.
- •Вопрос 32) Запаздывающие потенциалы а эл/дин
Вопрос 28)Единственность решения внутренних задач Дирихле и Неймана
Теорема1:
Задача Дирихле для огранич. внутр. обл.
имеет един. реш-е:
.
Док-во:
Предпол., что есть 2 реш-я
,тогда
их разн-ть
удовлет.
краевой задаче:
Но если гарм. ф-ция на границе обл-ти
=0, то по теореме о max и min она не может
быть не > ни < 0,
0,
т.е.
.
Теорема2:
Задаче Неймана для огранич. обл-ти имеет
неедин. реш-ние, однако разные реш-я
этой задачи могут отлич-ся лишь на
const. Док-во:
Предпол-м, что сущ-т 2 реш-я
,
примен-я для ф-ии
,
что и треб-сь док-ть. Заметим, что усилить
рез-тат нельзя, т.к. добавл-е const к задаче
Неймана реш-я её не меняет. Замечание:
1) В прилож-ях такая неедин-ть реш-я не
существенны, т.к. реаль. физ. поля как
правило выраж-ся ч/з grad реш-я задачи
Неймана. 2) Теоремы 1 и 2 перенос-ся на
пл-ть без принцип. измен-ний.
Вопрос 30) Метод Фурье общая схема
Одним из самых распростран методов решения краевых задач линейных ДУ в частных производных явл метод разделения переменных. Пусть надо решить систему Дирихле ( = 0; | s = f) или Неймана ( / n | s = f).Суть метода заключается в том, что решение задаем простым наложением: = с11 +с22+… где k – базисные решение урав-ния Лапласа, а ck – произвольные константы, определяемые нач. усл. В методе Фурье базисные решения ищутся в виде:
1) В декартовых координатах: (x,y,z) = X(x)Y(y)Z(z);
2)В цилиндрических координатах: (r,,z) = =R(r)A()Z(z);
3) В сферических координатах: (r,,) = R(r)T()A() Ф-ции X,R и т.д. отыскиваются подстановкой предполагаемых решений в ур-ние Лапласа. При этом ур-ние Лапласа распадается на савокупность ОДУ, относительно этих ф-ций связанных между собой некоторыми константами.Решение ОДУ выражается через элементарные функции (ехр, тригоном, Бесселя и т.п.). При этом базисные решения зависят только от савокупности некоторых констант, которых может удовлетворить граничным условиям задачи.Для области произвольного вида эту процедуру можно реализовать только приближенно с использованием чсленных методов: метод коллокации, метод наименьших квадратов, метод Галёркина.Для ряда канонических областей, границы которых совпадают с координатными поверхностями какой либо ортогональной СК, константы входящие в базисное решение могут быть определены точно. В дек сист коорд это параллелепипеды. В этом случае решение выражается в виде рядов. В некоторых частных случаях эти ряды суммируются, либо вырождаются