Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Алгебра_2.docx
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
1.23 Mб
Скачать

1.6. Отображения множеств

Изучим теперь некоторые вопросы, связанные с отношениями между множествами.

Будем говорить, что между множествами   и задано отношение ( и находятся в отношении ), если некоторым (возможно всем) элементам из соответствуют некоторые элементы из . Если множество находится в отношении с множеством , то будем писать:

.

Если при этом элементу ставится в соответствие элемент , то обозначать это будем

.

Определение 1.1.2. Отношение между множествами и называется отображением, если каждому из поставлен в соответствие один и только один элемент из (см. рис. 1.1.2. и 1.1.3). При специализации природы множеств и возникают специальные типы отображений, которые носят особые названия “функция”, "вектор-функция", "оператор", "мера", "функционал" и т.д. Мы столкнемся с ними в дальнейшем.

Для обозначения функции (отображения) из в будем пользоваться записью

Рис.1.1.2. Отображение Рис.1.1.3.Отношение, не являющееся

отображением

Определение 1.1.3. Если - элемент из , то отвечающий ему элемент из , называется его образом (при отображении ), а множество всех тех , для которых , называется прообразом  и обозначается (см.рис.1.1.4).

Рис.1.1.4. Прообраз b

Определение 1.1.4. Отображение называется взаимно однозначным отображением, если каждый элемент из имеет единственный образ при отображении и каждый элемент из имеет единственный прообраз при этом отображении.

Рис.1.1.5. Взаимно однозначное отображение

Мы в дальнейшем будем рассматривать только отображения, поскольку имеются приемы, сводящие многозначные отображения к однозначным, которые мы называем просто отображениями.

Понятие отображения играет важнейшую роль в математике, в частности в математическом анализе центральное место занимает понятие  функции, которой называется отображение одного числового множества в другое.

1.7. Мощность множества

При исследовании отношений между множествами большой интерес представляет "объем" множеств, число элементов в них. Но разговор о числе элементов понятен и обоснован, если это число конечное. Множества, состоящие из конечного числа элементов, будем называть  конечными. Однако, многие из множеств, рассматриваемых в математике, не являются конечными, например, множество действительных чисел, множество точек на плоскости, множество непрерывных функций, заданных на некотором отрезке и т.д. Для количественной характеристики бесконечных (да и конечных) множеств в теории множеств используется понятие  мощности множества

Будем говорить, что множества и имеют  одинаковую мощность, если существует взаимно однозначное отображение множества на множество (заметим, что в этом случае существует и взаимно однозначное отображение множества B на множество A).

Если множества и имеют одинаковую мощность, то будем говорить, что они  эквивалентны, это обозначается: .

Пусть - произвольные множества, тогда

т.е. любое множество эквивалентно самому себе; если множество эквивалентно множеству , то эквивалентно ; если, наконец, множество эквивалентно множеству , которое эквивалентно множеству , то эквивалентно .

Множество, эквивалентное некоторому своему собственному подмножеству, называется бесконечным

Если конечные множества имеют разное число элементов, то ясно, что одно из них содержит меньше элементов, чем другое. А как сравнить в этом смысле бесконечные множества? Будем говорить, что мощность множества  меньше мощности множества , если существует подмножество множества , эквивалентное множеству , но сами множества и не являются эквивалентными.

Мощность конечного множества равна числу его элементов. Для бесконечных множеств понятие "мощность" является обобщением понятия "количество элементов".

Укажем некоторые, полезные для дальнейшего, классы множеств.

Множество называется счетным, если оно имеет такую же мощность как и некоторое подмножество множества (множества натуральных чисел). Счетное множество может быть конечным или бесконечным.

 Бесконечное множество является счетным  тогда и только тогда, когда оно эквивалентно множеству натуральных чисел .

Заметим, что любое множество, мощность которого меньше мощности бесконечного счетного множества, является конечным.

Множество действительных чисел на отрезке от нуля до единицы имеет мощность  континуум, и само часто называется континуумом.  Мощность этого множества больше мощности бесконечного счетного множества. Возникает вопрос: имеется ли множество, мощность которого больше мощности бесконечного счетного множества, но меньше мощности континуум. Эта задача была сформулирована в 1900 году одним из крупнейших математиков мира Давидом Гильбертом. Оказалось, что эта задача имеет несколько неожиданный ответ: можно считать, что такое множество существует, а можно считать, что его не существует. Получающиеся при этом математические теории будут непротиворечивыми. Доказательство этого факта было доложено американским ученым Коэном в 1965 году на всемирном конгрессе математиков в Москве. Отметим, что ситуация с этой задачей напоминает ситуацию с пятым постулатом Евклида: через точку, лежащую вне данной прямой можно провести только одну прямую, параллельную данной. Как показал Лобачевский, отказ от этого постулата не приводит к противоречиям. Мы можем строить геометрию, для которой этот постулат имеет место, и геометрии, для которых он не верен.

В заключение приведем несколько примеров, демонстрирующих методику доказательства эквивалентности множеств.

Пример 1.11. Множество целых чисел счетное.

Понятно, что рассматриваемое множество бесконечное (множество натуральных чисел является его подмножеством).

Для доказательства счетности множества целых чисел надо построить взаимно однозначное отображение между множеством натуральных чисел и рассматриваемым множеством. Требуемое отображение задается правилом: расположим целые числа следующим образом:

и перенумеруем их натуральными числами, присвоив им номера (они указаны рядом с рассматриваемыми целыми числами). Очевидно, что каждое целое число получит свой номер, при этом разные числа получат разные номера. Верно и обратное: для каждого натурального числа (для каждого номера) найдется и при том единственное целое число, стоящее под этим номером. Таким образом, требуемое взаимно однозначное отображение построено.

Пример 1.12. Множество рациональных чисел счетное.

Известно, что любое рациональное число можно представить в виде несократимой дроби p/q, используя это представление расположим рациональные числа в соответствии со схемой:

. . . . . .

Перенумеруем эти числа примерно так же, как и в предыдущем примере (номера указаны сверху в скобках рядом с числами). Нетрудно убедиться в том, что сформулированное правило нумерации рациональных чисел дает требуемое взаимно однозначное отображение множества натуральных чисел в множество рациональных чисел.

Пример 1.13. Объединение счетного множества счетных множеств есть множество счетное.

Доказательство этого факта аналогично доказательству утверждения предыдущего примера.

В заключение приведем важное для дальнейшего утверждение. Но для этого нам потребуется еще одна операция над множествами.

 Прямым произведением множеств и (декартовым произведением) называется множество всех упорядоченных пар , где и . Это множество обозначается . Таким образом:

.

Обозначим , произведение сомножителей будем обозначать .

Теорема 1.1. для любого бесконечного множества Более того .

В частности , т.е. множество точек на прямой имеет такую мощность, что и множество точек на плоскости. Более того, точек в пространстве столько, сколько и на прямой.

На этом мы заканчиваем знакомство с основными понятиями математической логики и теории множеств - основ современной математики. Отметим, что многие аспекты этих теорий остались, к сожалению, за рамками этой главы, познакомиться с ними можно, например, по [1]  и [2].