Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория по химии для ВУЗов / Закон Мозл_ давав змогу визначати точн_ значення порядкових номер_в елемент_в.doc
Скачиваний:
152
Добавлен:
02.05.2014
Размер:
1.29 Mб
Скачать

Атомні ядра склад і будова атомних ядер

Атом — це мікросистема взаємодіючих частинок, яка скла­дається з двох частин з протилежними зарядами — ядра та електронної оболонки.

Атомне ядро — позитивно заряджена центральна частина атома, в якій зосереджена майже вся його маса. Ядра складаються з протонів і нейтронів, які є різними станами однієї частинки — нуклона.

Протон р — стабільна елементарна частинка з позитивним електричним зарядом q = 1,602 • 10-19 Кл, масою спокою тр = = 1,673 •10-24 г, відносною атомною масою Аr = 1,00728 (1836,1 тe), спіном s = 1/2 та магнітним моментом μр = 2,793 μN (ядерного магнетона). Існування протона передбачив (1911) і дав йому назву (1920) Резерфорд.

Нейтрон п — електрично нейтральна елементарна частинка з тп = 1,675 • 10-24 г, Аr = 1,00867 (1838,6 те), s = 1/2 і μn = 1,913 ц μN. Нейтрон у ядрі атома цілком стійкий, проте у вільному стані він розпадається на три стабільні частинки — протон, електрон і антинейтрино. Відкрив нейтрон і визначив його масу Чедвік (1932).

Протонно-нейтронну модель ядра вперше запропонував Іва-ненко (1932) і розвинув Гейзенберг. Розмір ядра залежить від кількості нуклонів А, що в ньому містяться. Його радіус r = 1,33 • 10-13А1/3 см, а густина ρ = 1,4 • 1014 г/см3 (тобто 140 млн Т/см3) майже не залежить від порядкового номера елемента. Загальне число протонів Z і нейтронів N дорівнює цілочисловому, округленому значенню атомної маси, яке називають масовим, або нуклонним, числом А: А = Z + N.

Число протонів у ядрі характеризує його заряд і дорівнює порядковому номеру хімічного елемента, або протонному числу Z, а число нейтронів відповідає різниці А — Z. Нуклонне й протонне числа позначають відповідними верхнім і нижнім індексами зліва від символу елемента.

Оскільки позитивний заряд протона й негативний заряд елек­трона збігаються за абсолютним значенням і дорівнюють елемен­тарному заряду, то в нейтральному атомі число електронів в оболонці завжди дорівнює числу протонів у ядрі. Отже, заряд ядра визначає число електронів в оболонці атома і є найважливішою ознакою індивідуальності хімічних елементів. З послідовним зрос­танням порядкового номера елемента число протонів в ядрах ато­мів збільшується на одиницю, в той час як число нейтронів — зростає нерівномірно. Наприклад, у ізотопів легких елементів Z~N, а в атомі останнього стабільного елемента — Вісмуту Z = 83, а N =126.

Нуклони мають складну внутрішню структуру. Маса нуклона здебільшого зосереджена в ядрі з радіусом близько 2 • 10-14 см. Ядро оточують концентричні оболонки (мантії), утворені двома швидки­ми -мезонами — частинками з масою, близькою до маси 270 електронів. Протон і нейтрон містять позитивний і негативний електричні заряди; у нейтроні їхні абсолютні значення однакові, тому сумарний заряд нейтрона дорівнює нулю, у протоні позитив­ний заряд переважає.

Протони та нейтрони не є найдрібнішими частинками. До їх складу входять три субелементарні гіпотетичні частинки з дробо­вим електричним зарядом — кварки (Гелл-Манн, 1964).

Ядра всіх атомів певного елемента мають однакове число про­тонів. Вид ядер і атомів з даним числом протонів і нейтронів називають нуклідом. Нукліди одного й того ж елемента, що від­різняються числом нейтронів при однакових числах протонів, називають ізотопами. Отже, нуклід — більш широке поняття, ніж ізотоп, оскільки кожний ізотоп є нуклідом, але лише нукліди одного елемента є ізотопами. Атоми з різним числом протонів і нейтронів, але з однаковим числом нуклонів називають ізобарами. Атоми з однаковим числом нейтронів, але різним числом протонів назива­ють ізотонами. Зокрема

Хоч у ізотопів і різні нуклонні числа, проте, маючи однаковий заряд ядра (і однакову електронну оболонку), вони, за винятком ізотопів Гідрогену (велика різниця в масах), мають однакові хімічні властивості. Ізобари та ізотони відрізняються за своїми хімічними властивостями. Відомо близько 400 стійких і понад 1500 радіоак­тивних нуклідів. Більшість природних хімічних елементів є сумі­шами двох чи кількох ізотопів, атоми яких відрізняються за числом нуклонів. Саме цим пояснюється значне відхилення атомних мас багатьох елементів від цілочислових значень. Вони відповідають природній суміші ізотопів і є усередненими.

Ізотопи мають ті ж назви й символи, що й самі елементи, але їх розрізняють за нуклонним числом. Для деяких легких атомів прийнято спеціальні назви й позначення, наприклад: Протій (ядро — протон), Дейтерій (ядро — дейтон) і Тритій (ядро — тритон) — для ізотопів Гідрогену; альфа-частин-ка — для ядра Гелію .

Ізотопно-чистих елементів налічують лише 21.

Маса ядра завжди менша від суми мас нуклонів, з яких воно утворене, на величину, яку називають дефектом маси.

За сучасними уявленнями атомне ядро — це квантова система, що існує в основному і в збуджених станах. У зв'язку з відсутністю теорій поля ядерних сил вдаються до ядерних моделей і за їх допомогою розв'язують окремі задачі.

Згідно з моделлю оболонковог структури ядер (Гепперт-Майєр, Йєнсен, 1948) кожний нуклон перебуває у певному кванто­вому стані, який характеризується енергією, спіном, магнітним і квадрупольним моментами, парністю тощо. Протони та нейтрони заповнюють ядерні шари подібно до електронів на енергетичних рівнях атомів. Особливо стійкими є ядра з цілком заповненими шарами, яким відповідають магічні числа. Для протонів і нейтронів характерними є магічні числа 2, 8, 20, 28, 50, 82. Підвищену стійкість повинні мати і ядра атомів з магічними числами нейтронів 114, 126, 184. На основі визначених періодичностей у властивостях ядер складено періодичну систему атомних ядер, що містить сім закінчених і восьмий незакінчений періоди.

У краплинній моделі ядро розглядається як краплина рідини, що містить менші краплинки. За цією моделлю вдалося передба­чити закономірності поділу ядер, створити термодинаміку ядерної речовини.

Синтезом оболонкової та краплинної моделей є узагальнена модель ядра, яка дала змогу систематизувати й передбачити енергетичні рівні ядер.

Природу сил, які, незважаючи на відштовхування однойменно заряджених протонів, утримують разом ядерні частинки, ще оста­точно не визначено. Але відомо, що ці сили діють між сусідніми частинками на віддалях, сумірних з розмірами ядра, і мають обмінний характер. У ядрі відбувається постійне взаємоперетво­рення нуклонів, зумовлене віртуальним (неспостережним виник­ненням і зникненням короткоживучих збуджень квантових полів) обміном я-мезонами.

З одного боку, протон і нейтрон перетворюються один в одного з утворенням -мезонів , а з другого — їх перетворення відбувається з випромінюванням електрона чи по­зитрона з одночасним виникненням антинейтрино або нейтрино .

Нейтрино v і антинейтрино — елементарні частинки з масою спокою, що не перевищує 1/2000 електронної маси, але відрізняються між собою орієнтацією спінів.

ОСНОВНІ ХАРАКТЕРИСТИКИ ХІМІЧНОГО ЗВ'ЯЗКУ

РОЗВИТОК УЯВЛЕНЬ ПРО ХІМІЧНИЙ ЗВ'ЯЗОК

Вивчення сил, що зумовлюють утворення сполук з хімічних елементів, принесло відчутні результати лише після відкриття електрона та визначення складної будови атомів. Ці сили названі хімічними, а здатність елементів до взаємодії — хімічною спорід­неністю.

Прихильники гравітаційної теорії шведський хімік Бергман і французький хімік Бертолле вважали, що причиною хімічної спо­рідненості є сила загального тяжіння. Проте, на думку Бергмана (1778), сила спорідненості речовин стала і не залежить від їхніх відносних мас. Бертолле (1801) визначив, що сила притягання частинок непостійна і залежить від їх маси та умов досліду. Гравітаційна теорія не пояснювала специфіку взаємодії й була необгрунтованою. (Тепер доведено, що гравітаційні сили атомів у 1033 разів (!) менші, ніж електромагнітні).

Англійський хімік і фізик Деві висунув гіпотезу (1807), згідно з якою хімічна спорідненість зумовлена електричними силами. На основі електрохімічної гіпотези шведський хімік Берцеліус побу­дував ряд електрозарядності елементів — дуалістичну систему (1811—1818). Сполучатися могли тільки атоми та атомні групи (радикали) з протилежним електростатичним зарядом. Ця тео­рія вперше пояснювала взаємодію атомів за допомогою електрич­них сил. Вона класифікувала елементи як електропозитивні та електронегативні, описувала утворення складних молекул з про­стих, проте була відкинута, коли з'ясувалося, що елементи одного й того ж класу можуть сполучатися один з одним.

Французький хімік Дюма відмовився від дуалізму та теорії радикалів Берцеліуса і висунув свою теорію типів (1840), що базувалася на дослідженнях металептичного заміщення Гідрогену на Хлор.

Унітарна система французького вченого Жерара (1848), на відміну від дуалістичної, базується на уявленні про молекулу як єдину цілісну систему атомів. Проведено розмежування понять атома, молекули та еквівалента, вперше вказано на взаємний вплив атомів у молекулі. Жерар розвинув (1851) теорію типів, згідно з якою хімічні властивості сполук залежать від аналогії в складі їх молекул і майже не залежать від природи атома. Це була спроба побудувати теорію лише на основі даних про склад речовин. Різні сполуки розглядали як похідні чотирьох типів — водню, води, хлороводню та амоніаку. Теорія типів сприяла виникненню понять одиниці спорідненості атомів і радикалів.

До середини XIX ст. виникла необхідність знайти закономірність в утворенні хімічних сполук, склад яких на той час точно виражали емпіричними формулами. Теорія валентності, що розвинулася на основі унітарної системи та теорії типів, принципово допускала можливість утворення зв'язків між. будь-якими частинками, але враховувала специфічність хімічної взаємодії.

Термін валентність уперше з'явився в Німеччині (Кекуле, Віхельгауз, 1867), хоч поняття про валентні співвідношення виник­ли раніше: основність (Уільямсон, 1852), ємність насичення, спо­лучна сила (Франкланд, 1852), атомність (Кекуле, 1857) та ін. Одлінг уперше (1855) став зображати значність (валентність) відповідною кількістю штрихів.

Вирішальну роль у створенні вчення про валентність відіграв німецький хімік Кекуле (1857). Під валентністю він розумів ціле число одиниць спорідненості вільного атома будь-якого елемента і виражав її часткою від ділення атомної маси на еквівалентну. На відміну від Кекуле, шотландський хімік Купер (1858) вважав, що деякі елементи здатні виявляти змінну валентність. Поступово з'явилася думка, що валентність є величиною змінною, яка зале­жить не лише від природи самого елемента, але й від природи тих елементів, з якими даний елемент вступає у взаємодію.

Уявлення про валентність мали неабияке значення для теорії хімічної будови, запропонованої російським хіміком Бутлеровим. У структурній теорії Бутлерова (1861) вперше показано, що моле­кула — не механічна суміш атомів, а нове якісне утворення, в якому атоми, впливаючи один на одний, змінюють свою структуру. Влас­тивості молекули залежать не лише від якості та кількості атомів, що входять до її складу, а й від порядку розміщення їх у молекулі. Проте структурна теорія не пояснює суті валентності, утворення комплексних сполук, природи хімічного зв'язку.

На основі уявлень про об'ємну межу для числа замісників навколо центрального атома в комплексних сполуках швейцарсь­кий хімік Вернер вводить (1893) поняття координаційного числа

та головної і побічної валентності. Це дало йому змогу створити струнку теорію координаційних сполук і визнати, що коорди­наційні числа атомів можуть перевищувати їх формальну ва­лентність. Німецький хімік Тіле припустив (1899), що в ненасиче-них сполуках вуглецеві атоми мають не повністю використану, тобто залишкову, спорідненість, яку він назвав парціальною ва­лентністю.

Інтерпретація значень валентності хімічних елементів пов'яза­на з природою хімічних зв'язків. Однак необхідно чітко розмежо­вувати ці поняття. Валентність — це формальна числова харак­теристика елемента, тоді як хімічний зв'язок є фізико-хімічним явищем. Валентність відображає форму хімічної взаємодії еле­ментів, а хімічний зв'язок — її зміст.

Серед перших спроб пояснити природу хімічного зв'язку з позицій електронних уявлень слід згадати думку, висловлену німецькими хіміками Аббегом і Бодлендером (1899), про спорід­неність атомів до електрона. Згодом Аббег (1904) розвинув уявлен­ня про електровалентність: кожний елемент має як позитивну, так і негативну максимальну валентність, сума яких завжди до­рівнює восьми. При цьому число позитивних одиниць валентності відповідає номеру групи періодичної системи. Твердження про можливість утворення міжатомного зв'язку парою електронів, які належать обом атомам, уперше висловив (1907) російський учений Морозов.

Певний внесок у розвиток уявлень про природу хімічного зв'яз­ку зробив і український вчений Писаржевський, який показав (1914), що багато хімічних реакцій супроводжується переміщенням електронів від одного атома до іншого. Згідно з цими і новими даними про будову атомів було запропоновано два напрями елек­тронної теорії хімічного зв'язку.

Теорія іонного зв'язку німецького фізика Косселя (1916) пере­дбачала, що реакційна здатність елементів зумовлена тим, що їх атоми намагаються імітувати електронну конфігурацію інертних елементів (дублет чи октет) за рахунок віддачі та приєднання електронів нейтральними атомами з утворенням ка­тіонів та аніонів, наприклад:

Хімічний зв'язок здійснюється шляхом електростатичного притя­гання утворених різнойменних іонів

Теорія ковалентного зв'язку була викладена американським хіміком Льюїсом (1916) і розвинута американським фізиком Ленг-мюром (1919). Вони припустили, що конфігурації атомів інертних елементів можна досягати не лише внаслідок переходу електронів від атомів одних елементів до інших, але й завдяки утворенню спільних електронних пар. Для цього кожний атом віддає однакову кількість електронів. Одна спільна електронна пара, яку зображають крапками, відповідає одній рисці за теорією будови Бутлерова, наприклад:

Спільну електронну пару, що спричинює здійснення хімічного зв'язку, називають поділеною парою електронів. Виникнення кратних (подвійних чи потрійних) зв'язків супроводжується утво­ренням відповідно двох чи трьох поділених електронних пар. Наприклад, сполучення атомів Нітрогену, що містять на зовніш­ньому енергетичному рівні по п'ять електронів, у молекулу азоту можна подати так:

Кожний атом Нітрогену має по три неспарених електрони, які й утворюють три зв'язки. При цьому в обох атомах Нітрогену залишається по одній парі неподілених електронів.

Глибші уявлення про природу хімічного зв'язку та структуру речовин слід шукати у квантово-механічних теоріях про розподіл електронної густини в молекулах і кристалах.