Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты к экз .doc
Скачиваний:
16
Добавлен:
22.11.2019
Размер:
5.49 Mб
Скачать

51.Типы гранитных пегматитов и процессы их образования.

Рассмотрим строение Коростеньского Плутона (рис 152).

Если представить себе неэродированный массив, то есть огромные массы анортозитов, что отражает разделение массива на плагиоклазовую и калишпатовую части. Анортозиты представлены лабрадоритами с прослоями пироксенитов с ильменитом. Ниже – пегматитоносные граниты, усеянные камерными и шлировыми пегматитами.

Термин «шлировые пегматиты» применяется к форме тела. Шлиры достигают размера университета. Форма круглая, т.е. это были капли расплава, отделившегося ликвационным путем. Шлиры окружены меланократовым биотитовым гранитом (рис 153) Этот процесс аналогичен расщеплению в жильных сериях. Меланократовые ореолы используются как поисковые критерии на пегматиты. Пегматитовое тело всегда выше ореола, что отражает эффект всплывания более легкого шлира. Случается отрыв ореола. На границе шлира с вмещающими породами возможно появление мелкозернистых аплитовых оторочек, что связано с эффектом быстрой кристаллизации при дегазации. Внутри пегматитового тела имеется четкая зональность: зона письменных гранитов – зона блокового КПШ – кварцевое ядро с камерой (рис 153). Письменные граниты имеют типичную структуру эвтектической кристаллизации, т.е. отщепившийся расплав был очень близок к эвтектике. Эта структура обусловлена наличием разноориентированных вростков кварца в КПШ. У контакта шлира письменные граниты мелкозернистые, в них присутствуют фенокристаллы биотита, богатого F. В нормальных гранитах кристаллизация начинается с ПШ, здесь с биотита. Значит, магма очень богата флюидами, среди которых у F - значительная роль (рис 154)

Ближе к центру камеры происходит укрупнение структуры. Потом резкая граница – кварц пропадает, остаются гигантские кристаллы КПШ (низкотемпературный высокоупорядоченный микроклин-пертит) – блоковая зона. Здесь мы имеем дело с отщеплением эвтектической пегматитовой магмы, которая дальше еще расщеплялась. Кристаллизация магмы приводит к повышению флюидного давления и замедляется. Под давлением флюидов магмы расщепляются на калишпатовую и кварцевую части, кристаллизующиеся отдельно. Камерные пегматиты – наличие плоскостей, в которых растут гигантские кристаллы. Все флюиды, соли концентрируются в камере, которая находится в центральной части пегматитового тела и является вместилищем всех драгоценных камней. Главным сырьем здесь является пьезокварц. Кварц – рост сверху, здесь сотовый кварц – переход альфа-бета кварца, мориона. Снизу растет топаз (алюминий заимствуется из калишпатовой зоны), иногда встречаются минералы Ве. Завершается все флюоритом, который заполняет пространство между кристаллами. Повышенное флюидное давление часто приводит к разрыву, и кварц-полевошпатовая масса может мигрировать с образованием жильных пегматитов. Для них тоже характерно зональное строение. Кварцевые ядра в отдельных частях могут отсутствовать. Роль флюидов та же – приводят к перекристаллизации кварц-полевошпатовой массы. Как пегматиты вписываются в гранитную систему? (рис 156) Пегматиты богаче КПШ, что отражает тренд 2. Мы рассмотрели топазово-пьезокварцевый (хрусталеносный) тип пегматитов (а). Он наиболее близок к гранитной эвтектике. Далее идут редкометальные и редкоземельные пегматиты (б). И самые бедные кварцем пегматиты – слюдяные (в). Это особый пегматитовый тренд – пегматиты беднее SiO2, чем граниты. Мусковитовые пегматиты надо называть граносиенитами, в них выделение кварцевого ядра очень редко. Модель Ферсмана не способна объяснить образование кристаллов в полостях. Образование пегматитовых тел в твердом состоянии. При участии флюидов происходит перекристаллизация гранитных массивов. Но не объясняет резких границ в строении. Конец 70х – ликвационная модель их образования.