Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Л.А. Штраус - Пределы

.doc
Скачиваний:
23
Добавлен:
23.03.2016
Размер:
1.27 Mб
Скачать

Предел функции в точке обозначается символом . Во всех рассматриваемых далее примерах функция определена в некоторой проколотой окрестности точки , поэтому мы будем использовать символ . Определение предела в случае аналогично приведённому ( его можно найти в учебнике или конспекте лекций).

Определение. Функция есть бесконечно малая при , если

Функции и называются эквивалентными (f ~ g) при , если в некоторой проколотой окрестности точки а выполнено соотношение , где .

Определение. Функция есть бесконечно малая относительно при , если в некоторой проколотой окрестности точки а выполнено соотношение , где При этом пишут Если при этом g- бесконечно малая, то говорят, что f есть бесконечно малая более высокого порядка по сравнению с g.

Справедливы следующие предложения.

  1. (f(х) ~ g(х)) при .

  2. (f(х) ~ g(х)) при

Последнее правило не распространяется на суммы и разности функций, кроме отдельных случаев, например

3. Если f(х) ~ах и g(х) ~bх и , то (f(х) - g(х)) ~(а- b)х.

При вычислении пределов функций полезно использовать таблицу эквивалентных бесконечно малых величин при :

1. sinx~x , ,

2. arcsinx~x, arcsinx =x+o(x),

3. tgx~x , tgx=x+o(x),

4. arctgx ~x, arctgx=x+o(x),

5. ~x , ,

6. ~xlna, ,

7. ~x , ,

8. ~ , ,

9. ~ , ,

10. 1-cosx~, .

Пример 17. Доказать (найти ()), что .

Решение. Заметив, что квадратный трёхчлен имеет корни и , упростим исходное выражение:

.

Тогда соответствующая часть формулы (9) из определения предела функции принимает вид . Это неравенство будет выполняться, если . Следовательно, можно взять .

Пример 18. Найти предел .

Решение. При многочлены в числителе и знаменателе исходного выражения обращаются в нуль, следовательно, их пределы в точке равны нулю и мы имеем неопределённость вида . Преобразуем исходное выражение. Разложим многочлены в его числителе и знаменателе на множители, воспользовавшись тем, что является их корнем, с помощью группировки слагаемых или разделив их на х-2:

, .

Получаем Мы снова имеем неопределённость, так как при х=2 числитель и знаменатель последней дроби обращаются в нуль. Разлагаем их на множители, сокращаем и находим искомый предел: .

Пример 19. Найти предел

.

Решение. Имеем неопределённость вида . Преобразуем исходное выражение, умножив его числитель и знаменатель на множитель , сопряжённый к числителю.

Поскольку , то

.

Пример 20. Найти предел .

Решение. Подставив х=1 в выражения в числителе и знаменателе, убеждаемся в том, что имеется неопределённость вида . Воспользуемся формулами (3), (4). Умножим числитель и знаменатель исходного выражения на множитель , дополняющий числитель до разности кубов (неполный квадрат суммы), и на множитель , сопряжённый к знаменателю. Получаем

Поскольку , , то

.

Пример 20. Найти предел .

Решение. Дважды применим приём умножения на сопряжённое выражение.

, поскольку при .

Далее,

.

Пример 21. Найти предел .

Решение. Применим формулу (5) , положив в ней , . Умножив числитель и знаменатель исходной дроби на выражение и учитывая, что оно стремится к 5, получаем:

Пример 22. Найти предел .

Решение. 1-й способ. Сделаем замену переменной:

По

предложению 3 выражение в числителе эквивалентно , следовательно,

2-й способ. Сделаем замену переменной и воспользуемся формулой 9 из таблицы эквивалентных бесконечно малых.

Пример 23. Вычислить предел функции

Решение. Воспользовавшись формулами приведения и табличными эквивалентностями, получаем

Пример24. Вычислить предел функции

.

Решение. Заметив, что все сомножители в числителе и знаменателе исходного выражения есть бесконечно малые при , заменим их, кроме , на эквивалентные:

Получаем

.

Пример 25. Вычислить предел функции .

Решение. 1-й способ. Преобразуем исходное выражение и разделим числитель и знаменатель на х: . Тогда по арифметическим свойствам предела . По таблице заменяем выражения на эквивалентные и переходим к пределу в каждом слагаемом:

2-й способ. Поскольку , то . Точно так же и при . Воспользовавшись этими соотношениями, получаем

.

Пример 26. Вычислить предел функции

.

Решение. Вынесем в знаменателе исходного выражения множитель и учтём, что : . Теперь сделаем замену переменной, воспользуемся формулой приведения и табличными эквивалентностями:

.

.

Пример 27. Вычислить предел функции

Решение. 1-й способ. Преобразуем числитель исходного выражения:

Используя последнее равенство, приём умножения на сопряжённое выражение, предел и табличные эквивалентности, получаем:

++=

+ + = + 1 +

2-й способ. Последовательно используя табличные формулы

при , получаем

Пример 28. Вычислить предел функции

Решение. Сделаем подстановку и воспользуемся табличными формулами:

Пример 29. Вычислить предел функции

Решение. Сделаем подстановку :

(10)

Преобразуем выражение

Подставляем полученное выражение в (10):

Пример 30. Вычислить предел функции

Решение.

Мы воспользовались свойствами логарифма и тем, что есть бесконечно большая, а и -бесконечно малые при

Пример 31. Найти предел

Решение. Понизим степень в исходном выражении и вынесем n из-под корня: Теперь используем табличное представление , где при , формулу приведения и то, что (непрерывность косинуса):

Пример 32. Вычислить предел функции

Решение. Величина является ограниченной, а x - бесконечно малой при . Поэтому их произведение есть бесконечно малая. Далее, поэтому ; . Отсюда

Пример 33. Вычислить предел функции

Решение. Воспользуемся тем, что если , то В нашем случае , Тогда

Задачи, связанные с применением второго замечательного предела

Второй замечательный предел

(11)

применяется ( как и в случае последовательностей) при вычислении пределов , где т.е. в случае неопределённости вида

Следующие три примера решим различными способами.

Пример 34. Вычислить предел функции

Решение. Находим пределы основания и показателя степени исходного выражения и убеждаемся в том, что перед нами неопределённость вида Выделяем в исходном выражении формулу и вычисляем предел.

Предел выражения можно находить, предварительно вычислив предел его логарифма.

Пример 35. Вычислить предел функции

Решение. Преобразуем логарифм исходного выражения, применив формулу Отсюда Теперь находим искомый предел:

Для вычисления предела , где т.е. в случае неопределённости вида , можно использовать правило:

. (12)

Пример 36. Вычислить предел функции

Решение. Находим

Далее, и в силу (12) получаем

Пример 37. Последовательность функций определяется следующим образом: Найти

Решение. Легко заметить и доказать по индукции, что Оценим разность между и числом являющимся корнем уравнения . Последнее неравенство следует из того, чтоиПрименяя полученное неравенство к разности и т.д., получим то есть. Отсюда видно, что

Непрерывность функции

Определение. Функция , заданная на множестве ЕR, называется непрерывной в точке аЕ, если

(13)

Отсюда следует, что в изолированной точке множества Е функция непрерывна (см. пример 41); если же а - предельная для множества Е, то (13) означает, что

Пример 38. Доказать, что функция непрерывна в точке а=2(найти ).

Решение. 1-й способ. Поскольку определена при всех значениях R, то Е= R и (13) принимает вид:

Переходим к неравенству для значений функции:

(14)

Пусть выполнено неравенство то есть Тогда Если теперь потребовать, чтобы выполнялось неравенство , то неравенство (14) также будет выполнено: Итак, для выполнения последнего неравенства потребовалось, чтобы и . Поэтому

2-й способ. Неравенство для значений функции выполнено, если выполнено неравенство

Последнее неравенство, (квадратное относительно ) выполнено, если Таким образом,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]