
- •Тема 1. Упругие волны.
- •Вопрос 2. Уравнение плоской волны.
- •Вопрос 3. Принцип суперпозиции волн. Групповая скорость. Стоячие волны.
- •Вопрос 4. Эффект Доплера в акустике.
- •Вопрос 5. Ультразвук. Источники и приемники ультразвуковых волн. Применение ультразвука.
- •Тема 2. Электромагнитные колебания.
- •Вопрос 2. Свободные затухающие электромагнитные колебания. Дифференциальное уравнение свободных затухающих колебаний и его решение.
- •Вопрос 3. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
- •Вопрос 4. Резонанс напряжений и резонанс токов.
- •Тема 3. Основы теории максвелла для
- •Вопрос 2. Первое уравнение Максвелла в интегральной форме.
- •Вопрос 3. Ток смещения и второе уравнение Максвелла в интегральной форме.
- •Тема 4. Электромагнитные волны.
- •Вопрос 2. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля.
- •Вопрос 3. Энергия электромагнитных волн.
- •Вопрос 4. Давление электромагнитных волн.
- •Тема 5. Геометрическая оптика.
- •Вопрос 1. Основные законы геометрической оптики.
- •Вопрос 2. Фотометрические величины и их единицы.
- •Тема 6. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
- •3. Построение изображений предметов с помощью тонкой линзы.
- •Вопрос 1. Преломление и отражение света на сферических поверхностях.
- •Вопрос 2.Тонкие линзы. Формула тонкой линзы.
- •Вопрос 3. Построение изображений предметов с помощью тонкой линзы.
- •Тема 7. Световые волны.
- •Вопрос 2. Когерентные световые волны. Интерференция волн.
- •Вопрос 3. Методы наблюдения интерференции света.
- •Тема 8. Интерференция света при отражении от тонких пластинок.
- •Вопрос 1. Полосы равного наклона.
- •Вопрос 2. Полосы равной толщины.
- •Вопрос 3. Кольца Ньютона.
- •Вопрос 4. Применения явления интерференции. Просветление оптики. Интерферометры.
- •Тема 9. Дифракция света.
- •Вопрос 2. Принцип Гюйгенса-Френеля. Зоны Френеля.
- •Вопрос 3. Дифракция света на круглом экране и круглом отверстии.
- •Вопрос 4. Дифракция Фраунгофера на одной щели.
- •Тема 10. Дифракционная решетка,
- •Вопрос 2. Дифракционный спектр.
- •Вопрос 3. Дисперсия и разрешающая способность.
- •Вопрос 4. Дифракция рентгеновских лучей на кристаллической решетке.
- •Тема 11. Взаимодействие света с веществом.
- •Вопрос 2. Электронная теория дисперсии.
- •Вопрос 3. Поглощение света. Закон Бугера-Ламберта.
- •Тема 12. Поляризация света.
- •Вопрос 1. Естественный и поляризованный свет.
- •Вопрос 2. Поляризаторы. Степень поляризации. Закон Малюса.
- •Тема 13. Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
- •Вопрос 1. Поляризация света при отражении и преломлении. Закон Брюстера.
- •Вопрос 2. Поляризация при двойном лучепреломлении. Анизотропия кристаллов.
- •Вопрос 3. Анализ поляризованного света.
- •Тема 14. Искусственное двойноелучепреломление.
- •Вопрос 2. Вращение плоскости поляризации.
- •Тема 15. Элементы специальной теории относительности
- •Вопрос 2. Постулаты специальной теории относительности.
- •Вопрос 3. Преобразования Лоренца.
- •Вопрос 4. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
- •Вопрос 5. Эффект Доплера для световых волн.
- •Вопрос 6. Границы применимости классической механики.
- •Тема 16. Квантовая оптика.
- •Вопрос 2. Энергетическая светимость. Излучательная, отражательная и поглощательная способность тела.
- •Вопрос 3. Абсолютно черное тело. Серое тело. Закон Кирхгофа.
- •Вопрос 4. Закон Стефана-Больцмана. Законы Вина.
- •Вопрос 5. Формула Планка.
- •Вопрос 6. Оптическая пирометрия.
- •Тема 17. Фотоэлектрический эффект.
- •Вопрос 2. Уравнение Эйнштейна для внешнего фотоэффекта Фотонная теория света. Масса, энергия и импульс фотона.
- •Вопрос 3. Однофотонный и многофотонный фотоэффект.
- •Вопрос 4. Внутренний фотоэффект.
- •Тема 18. Давление света. Эффект комптона.
- •Вопрос 2. Давление света
- •Вопрос 2. Эффект Комптона.
- •Вопрос 3. Тормозное и характеристическое рентгеновское излучение.
- •Тема 19. Атом водорода по резерфорду и бору
- •Вопрос 2. Классическая модель атома по Резерфорду.
- •Вопрос 3. Постулаты Бора и объяснение происхождения линейчатых спектров. Закономерности в атомных спектрах.
- •Вопрос 4. Теория атома водорода.
- •Вопрос 5. Виды спектров. Спектральный анализ.
- •Оптические спектры Спектры испускания
- •Полосатые спектры
- •Спектры поглощения
- •Тема 20. Гипотеза де бройля. Соотношения неопределенностей гейзенберга.
- •1. Гипотеза и формула де Бройля. Экспериментальное подтверждение гипотезы.
- •2. Соотношения неопределенностей Гейзенберга.
- •Вопрос 1. Гипотеза де Бройля и ее экспериментальное подтверждение.
- •Вопрос 2. Соотношения неопределенностей Гейзенберга.
- •Тема 21. Волноваяфункция. Уравнение шрёдингера.
- •Вопрос 2. Уравнение Шрёдингера.
- •Вопрос 3. Применение уравнения Шрёдингера к свободному электрону.
- •Вопрос 4. Частица в потенциальной яме. Квантование энергии.
- •Вопрос 5. Прохождение частицы сквозь потенциальный барьер.
- •Вопрос 6. Уравнение Шредингера для атома водорода. Векторная модель атома.
- •Тема 22. Строение атомного ядра.
- •Вопрос 2. Состав атомного ядра. Нуклоны и их взаимопревращаемость.
- •Вопрос 3. Энергия связи и устойчивость ядер.
- •Вопрос 4. Ядерные силы и их свойства.
- •Вопрос 5. Ядерные реакции
- •Тема 23. Явление радиоактивности
- •Вопрос 2. Взаимодействия радиоактивного излучения с веществом.
- •Вопрос 3. Закон радиоактивного распада. Период полураспада.
- •Вопрос 4. Единицы радиоактивности.
- •Вопрос 5. Биологическое действие ионизирующего излучения. Радиационная безопасность.
- •Тема 24. Физика лазеров.
- •Вопрос 2. Взаимодействие света с веществом.
- •Вопрос 3. Устройство лазера. Принцип действия лазера.
- •Вопрос 4. Типы лазеров.
- •Вопрос 5. Свойства и применения лазерного излучения.
Вопрос 2. Когерентные световые волны. Интерференция волн.
Когерентностью называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов, проявляющееся при их сложении.
Пусть в данную точку пространства приходят две световые волны Е1 и Е2 одинаковой частоты, которые возбуждают в этой точке колебания одинакового направления (обе волны поляризованы одинаковым образом):
Е1 = А1соs(t + 1),
Е2 = A2cos(t + 2).
Согласно
принципу суперпозиции, напряженность
результирующего поля равна
=
1
+
2.
Тогда амплитуда А
результирующего колебания той же частоты
может быть определена из выражения:
А2 = А12 +А22 + 2А1А2соs, (7.1)
где = 1 - 2 = const.
Если частоты колебаний в обеих волнах одинаковы, а разность фаз возбуждаемых колебаний остается постоянной во времени, то такие волны называются когерентными. Для электромагнитных волн существует дополнительное ограничение – не дают интерференционной картины когерентные волны ортогональной поляризации.
При наложении когерентных волн они дают устойчивое колебание с неизменной амплитудой А = соnst, определяемой выражением (7.1) и в зависимости от разности фаз колебаний лежащей в пределах
|а1 –А2 а1 +А2.
Таким образом, когерентные волны при интерференции друг с другом дают устойчивое колебание с амплитудой не больше суммы амплитуд интерферирующих волн.
Если = , тогда соs = -1, и А1 = А2, то амплитуда суммарного колебания равна нулю, и интерферирующие волны полностью гасят друг друга.
В случае некогерентных волн непрерывно изменяется, принимая с равной вероятностью любые значения, вследствие чего среднее по времени значение cоst = 0. Поэтому слагаемое 2А1А2соs в уравнении (7.1) равно нулю и
<А2 = <А12 + <А22,
откуда интенсивность, наблюдаемая при наложении некогерентных волн, равна сумме интенсивностей, создаваемых каждой из волн в отдельности:
I = I1 + I2 .
В случае когерентных волн, соs имеет постоянное во времени значение (но свое для каждой точки пространства), так что
.
(7.2)
В тех точках пространства, для которых соs > 0, I I1 +I2; в точках, для которых соs < 0, I I1+I2. При наложении когерентных световых волн происходит перераспределение энергии светового потока в пространстве (при глобальном выполнении закона сохранения энергии), в результате чего в одних местах возникают максимумы, а в других - минимумы интенсивности (наблюдается интерференционная картина). Это явление называется интерференцией волн. Особенно отчетливо проявляется интерференция в том случае, когда интенсивности обеих интерферирующих волн одинаковы: I1 = I2. Тогда согласно (7.2) в максимумах I = 4I1, в минимумах же I = 0. Для некогерентных волн при том же условии получается всюду одинаковая интенсивность I = 2I1.
Если имеются отклонения от сформулированных условий когерентности, например, частоты двух складываемых монохроматических волн несколько отличаются, то интерференционная картина может становиться неустойчивой, возникает эффект плывущей картины. Если же частоты складываемых волн совпадают, но разность фаз между ними изменяется со временем, то интерференционная картина, как правило, остается стационарной, но ее контрастность (соотношение интенсивностей соседних максимумов и минимумов) уменьшается.
Все естественные источники света (Солнце, лампочки накаливания и т.д.) не излучают электромагнитных волн одной определенной и строго постоянной частоты, поэтому световые волны, излучаемые любыми независимыми естественными источниками света, всегда некогерентны и, используя два таких источника, невозможно получить интерференцию света.
Некогерентность естественных источников света обусловлена тем, что излучение светящегося тела слагается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью порядка 10-8 с и протяженностью около 3 м. Фаза нового цуга никак не связана с фазой предыдущего цуга. В испускаемой телом световой волне излучение одной группы атомов через время порядка 10-8 с сменяется излучением другой группы, причем фаза результирующей волны претерпевает случайные изменения. Когерентность существует только в пределах одного цуга. Средняя продолжительность одного цуга τ называется временем когерентности. Если волна распространяется в однородной среде, то фаза колебаний в какой-либо определенной точке пространства остается постоянной только в течение времени когерентности. За это время волна распространяется на расстояние lког = Vτ, называемое длиной когерентности (или длиной цуга). Колебания в точках, удаленных друг от друга на расстояниях, больших длины когерентности вдоль направления распространения волны, будут некогерентными.
Лазерное излучение характеризуется высокой степенью монохроматичности, т.е. излучение происходит на одной определенной и строго постоянной частоте, поэтому можно наблюдать интерференцию световых пучков, излучаемых двумя разными лазерами.
А как можно, пользуясь обычными некогерентными излучателями света, создать взаимно когерентные источники?
Когерентные световые волны можно получить, разделив (с помощью отражений или преломлений) волну, излучаемую одним источником света, на две части. Если заставить эти две волны пройти разные оптические пути, а потом наложить их друга на друга, то наблюдается интерференция волн. Разность оптических длин путей, проходимых интерферирующими волнами, не должна быть очень большой, так как складывающиеся колебания должны принадлежать одному и тому же результирующему цугу волн. Если эта разность 1м, то будет наблюдаться наложение колебаний, соответствующих разным цугам, разность фаз между которыми будет непрерывно изменяться хаотическим образом, и интерференция волн не наблюдается.
Пусть разделение на две когерентные волны происходит в точке О (рис.7.2).
До точки Р первая волна проходит в среде с показателем преломления n1 путь S1, вторая волна проходит в среде с показателем преломления n2 путь S2. Если в точке О фаза колебания равна t, то первая волна возбудит в точке Р колебание А1соs(t – S1/V1), а вторая волна – колебание А2соs(t – S2/V2), где V1 и V2 - фазовые скорости волны в первой и второй средах соответственно.
Рис.7.2.
Следовательно, разность фаз колебаний, возбуждаемых волнами в точке Р, будет равна:
(S2/V2 – S1/V1) = (c)(n2S2 – n1S1).
Заменим /с через 2/с = 2/о, тогда
= (2/о), (7.3)
где = n2S2 - n1S1 = L2 - L1 – величина, равная разности оптических длин проходимых волнами путей, и называется оптической разностью хода.
Из (7.3) видно, что если оптическая разность хода равна целому числу длин волн в вакууме:
= ±mо (m = 0,1,2,…), (7.4)
то разность фаз оказывается кратной 2 и колебания, возбуждаемые в точке Р обеими волнами, будут происходить с одинаковой фазой. Таким образом, (7.4) есть условие интерференционного максимума.
Если оптическая разность хода равна полуцелому числу длин волн в вакууме:
= ± (m + 1/2)о (m =0, 1,2, ...), (7.5)
то = ± (2m + 1), то есть колебания в точке Р находятся в противофазе. Следовательно, (7.5) есть условие интерференционного минимума.
Принцип получения когерентных световых волн разделением волны на две части, проходящие различные пути, может быть практически осуществлен различными способами - с помощью экранов и щелей, зеркал и преломляющих тел.