Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Introduction to Supersymmetry

.pdf
Скачиваний:
19
Добавлен:
03.06.2015
Размер:
520.44 Кб
Скачать

4.4. VECTOR SUPERFIELDS

25

Since W is a chiral super eld, R d2 W W will be a susy invariant Lagrangian. To obtain its component expansion we need the -term (F -term) of

W W :

W W = 2i @

+ D2 2 ( ) ( ) f f ;

(4.48)

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

= tr

 

= 0.

Furthermore,

 

 

 

where we used (

)

 

 

 

 

 

 

 

 

1

 

 

 

i

 

 

( ) ( ) =

 

(g g g g )

 

 

(4.49)

2

2

(with 0123 = +1) so that

Z

d2 W W = 2f f 2i @ + D2

+

4 f f :

(4.50)

 

1

 

 

 

 

i

 

Note that the rst three terms are real while the last one is purely imaginary.

25

26

CHAPTER 4. SUPERSPACE AND SUPERFIELDS

26

Chapter 5

Supersymmetric gauge theories

We rst discuss pure N = 1 gauge theory which only involves the vector multiplet and will be described in terms of the vector super eld of the previous section. We will need a slight generalization of the de nition of W to the non-abelian case. All members of the vector multiplet (the gauge boson v and the gaugino ) necessarily are in the same representation of the gauge group, i.e. in the adjoint representation. Lateron we will couple chiral multiplets to this vector multiplet. The chiral elds can be in any representation of the gauge group, e.g. in the fundamental one.

5.1Pure N = 1 gauge theory

We start with the vector multiplet (4.36) with every component now in the adjoint representation of the gauge group G, i.e. V VaT a; a = 1; : : : dimG where the Ta are the generators in the adjoint. The basic object then is eV rather than V itself. The non-abelian generalisation of the transformation (4.37) is now

eV ! ei yeV e i , e V ! ei e V e i y

(5.1)

with a chiral super eld. To rst order in this reproduces (4.37) with = i . We will construct an action such that this non-linear transformation is a (local) symmetry. This transformation can again be used to set ; C; M; N and one component of v to zero, resulting in the same component expansion (4.39) of

Vin the Wess-Zumino gauge. From now on we adopt this WZ gauge. Then

Vn = 0; n 3. The same remains true if some D or D are inserted in the product, e.g. V (D V )V = 0. One simply has

 

V

1

 

2

 

 

e

 

= 1 + V +

 

V

 

:

(5.2)

 

 

 

 

 

2

 

 

 

 

27

28

 

CHAPTER 5. SUPERSYMMETRIC GAUGE THEORIES

The super elds

W are now de ned as

W = +4DD eV D e V

 

 

W =

4DD e V D eV

;

;

(5.3)

 

1

 

 

 

1

 

 

 

 

 

which to rst order in V reduces to the abelian de nition (4.41). transformation (5.1) one then has

W ! 14 DD ei e V e i y D ei y eV e i

= 14 DD ei e V (D eV )e i + eV D e i :

Under the

(5.4)

The second term is 41

 

 

 

 

 

 

DD

 

ei D e i

and vanishes for the same reason as

1

 

 

 

 

 

 

 

 

 

DDD in (4.42). Thus

 

 

4

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

W !

 

ei DD e V D eV e i = ei W e i

(5.5)

 

 

4

i.e. W transforms covariantly under (5.1). Similarly, one has

 

 

 

 

 

 

 

 

 

! ei y W e i y :

 

 

 

 

 

 

 

 

W

(5.6)

Next, we want to obtain the component expansion of W in WZ gauge. In-

serting the expansion (5.2) into the de nition (5.3) gives

 

W =

1

 

 

1

 

 

 

 

DDD V +

DD[V; D V ] :

(5.7)

 

 

 

4

8

The rst term is the same as in the abelian case and has been computed in (4.46), while for the new term we have (all arguments are y )

_

[V; D V ] = ( ) [v ; v ] + i _ [v ; ] (5.8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and then, using again DD = 4

 

 

 

 

1

 

 

 

1

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_

 

 

 

 

DD[V; D V ] =

 

( ) [v ; v ]

 

_ [v ; ] :

(5.9)

 

8

2

2

Adding this to (4.46) simply turns ordinary derivatives of the elds into gauge covariant derivatives and we nally obtain

W = i (y) + D(y) + i( ) F (y) + ( D

 

(y))

(5.10)

where now

i

 

 

 

 

F = @ v @ v

[v ; v ]

(5.11)

 

2

28

5.1. PURE N = 1 GAUGE THEORY

 

 

 

 

29

and

i

 

 

 

 

 

 

 

 

 

 

 

 

 

D = @

[v ; ] :

(5.12)

 

2

The reader should not confuse the gauge covariant derivative D neither with the

super covariant derivatives D and D , nor with the auxiliary eld D.

 

The gauge group generators T a satisfy

 

 

 

 

 

 

 

 

 

 

[T a; T b] = ifabcT c

 

 

 

 

(5.13)

with real structure constants f abc. The eld strength then is F a

= @

 

va

 

@

n

va +

1

abc

b c

 

 

 

 

 

2 f

 

v v

. We introduce the gauge coupling constant g by scaling the super eld

V and hence all of its component elds as

 

 

 

 

 

 

 

 

 

 

V ! 2g V , v ! 2g v ; ! 2g ; D ! 2g D

 

 

 

(5.14)

so that then we have the rescaled de nitions of gauge covariant derivative andeld strength

D = @ ig[v ; ]

) (D )a = @ a + gfabcvb c

 

(5.15)

F = @ v @ v ig[v ; v ]

) F a = @ va @ va + gfabcvb vc

:

 

(We have implicitly assumed that the gauge group is simple so that there is a single coupling constant g. The generalisation to G = G1 G2 : : : and several g1; g2; : : : is straightforward.) Then the component expansion (5.10) of W remains unchanged, except for two things: there is on overall factor 2g multiplying the r.h.s. and F and D are now given by (5.15). It follows that (4.50) also remains unchanged except for the replacements f ! F and @ ! D and an overall factor 4g2. One then introduces the complex coupling

constant

 

 

4 i

 

=

+

(5.16)

 

 

 

2

g2

where stands for the -angle. (We use a capital to avoid confusion with the superspace coordinates .) Then

Lgauge

=

1

Im ( R

d2 Tr W W )

 

 

 

 

 

 

 

 

 

 

 

 

32

 

 

 

 

 

 

 

 

 

 

 

(5.17)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TrF F

 

 

= Tr 41 F F i D + 21 D2 + 32 2 g2

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.18)

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

is the dual eld strength.

The single term TrW

 

W

has produced both, the

conventionally normalised gauge

kinetic term

 

1

 

F

 

F

and the instanton

 

g2

 

F

 

 

 

 

 

 

 

 

 

 

4 Tr

 

 

 

density

32 2

TrF e

 

which multiplies the -angle!

 

 

 

 

 

 

 

 

29

30

CHAPTER 5. SUPERSYMMETRIC GAUGE THEORIES

5.2N = 1 gauge theory with matter

We now add chiral (matter) multiplets i transforming in some representation R of the gauge group where the generators are represented by matrices (TRa)i j . Then

 

i ! ei i j

j

; iy ! jy e i y ji

(5.19)

or simply ! ei ; y ! ye i y

where = aTRa is understood. Then

 

 

yeV yeV aTRa iy eV i j j

(5.20)

is the gauge invariant generalisation of the kinetic term and

 

Lmatter = Z

d2 d2

 

yeV + Z

d2 W ( ) + Z

d2

 

[W ( )]y :

 

 

 

(5.21)

Note that we have not yet scaled V by 2g, or equivalently we set 2g = 1 for the time being to simplify the formula. We want to compute the component

(D-term) of yeV = y + yV + 12 yV 2 . The rst term is given by (4.29). The second term is

yV

=

i

zyv @ z

i

 

@ zyv z 21

 

v

 

2

2

 

+

p2 zy p2

 

z + 2 zyDz

 

 

i

 

i

 

 

1

 

 

 

 

 

 

and the third term is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

yV 2

= 4 zyv v z :

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.22)

(5.23)

Combining all three terms gives

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

yeV

=

(D z)yD z i

 

 

 

D + fyf

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

i

 

 

 

1

 

 

 

 

 

 

 

 

(5.24)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

p

 

zy

p

 

 

 

 

z + 2 zyDz + total derivative :

2

2

 

with D z = @ z

i

vaTRaz and D

= @

 

 

i

vaTRa

. We now rescale V ! 2gV

2

2

and use the rst identity (2.15) to rewrite

 

 

D =

D

 

+total derivative.

Then this is replaced by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ye2gV

 

 

=

 

 

(D z)yD z i

 

D

 

 

 

+ fyf

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.25)

 

+

 

 

ip2gzy

 

ip2g z + gzyDz + total derivative :

 

 

 

now with D z

= @ z igvaTRaz and D

 

 

 

= @

igvaTRa i

. This part of

the Lagrangian contains the kinetic terms for the scalar elds z

and the matter

30

5.2. N = 1 GAUGE THEORY WITH MATTER

31

fermions i, as well as speci c interactions between the zi, the

i and the gauginos

a. One has e.g. zy

 

zy(T a)i

a j .

 

 

i R j

 

 

What happens to the superpotential W ( )? This must be a chiral super eld and hence must be constructed from the i alone. It must also be gauge invariant which imposes severe constraints on the superpotential. A term of the form ai1;:::in i1 : : : in will only be allowed if the n-fold product of the representation R contains the trivial representation and then ai1;:::in must be an invariant tensor of the gauge group. An example is G = SU(3) with R = 3. Then 3 3 3 = 1+: : :

and the correponding SU(3) invariant tensor is ijk . In this example, however, bilinears would not be gauge invariant. On the other hand, the representation R need not be irreducible. Taking again the example of G = SU(3) one may have R = 3 3 corresponding to a chiral super eld i transforming as 3 (\quark")

e

and a chiral super eld i transforming as 3 (\antiquark"). Then one can form

e i

the gauge invariant chiral super eld i which corresponds to a \quark" mass term.

There is a last type of term that may appear in case the gauge group simply is U(1) or contains U(1) factors.footnote If there is at least an extra U(1) factor the gauge group certainly is not simple and we have several coupling constants: These are the Fayet-Iliopoulos terms. Let V A denote the vector super eld in the abelian case, or the component corresponding to an abelian factor. Then under an abelian gauge transformation, V A ! V A i + i y, with a chiral super eld. From the component expansion of such a chiral or anti chiral super eld (4.20) or (4.21) one sees that the D-term (the term ) transforms as DA ! DA + @ @ (: : :), i.e. as a total derivative. Being a D-term, it also transforms as a total derivative under susy. It follows that

2

X

 

 

 

 

2

X

 

 

LFI = A abelian factors A Z

 

 

 

1

 

 

 

 

d2 d2 V A =

2 A abelian factors

ADA

(5.26)

is a susy and gauge invariant Lagrangian (i.e. up to total derivatives).

We can nally write the full N = 1 Lagrangian, being the sum of (5.17),

31

32

 

 

 

 

 

 

CHAPTER 5.

 

SUPERSYMMETRIC GAUGE THEORIES

(5.25) and (5.26):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L = Lgauge + Lmatter + LFI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1

Im ( R d2 Tr W W ) + 2g PA A R d2 d2

 

V A

 

 

 

32

 

+ R d2 d2

 

ye2gV + R d2 W ( ) + R d2

 

[W ( )]y

 

 

 

 

= Tr 41 F F i D

 

+ 21 D2 +

 

g2 TrF F + g

A ADA

 

32 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

p

 

e

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

+ (D z)yD

z i

+ fyf + i 2gzy i 2g z + gzyDz

 

@W

 

i

 

 

 

1 @2W i

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@zi

f

 

+ h:c: 2

 

 

 

 

+ h:c: + total derivative :

 

 

@zi@zj

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.27)

The auxiliary eld equations of motion are

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fiy =

@W

 

 

 

 

 

 

 

(5.28)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@zi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

Da = gzyT az g a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.29)

where it is understood that a = 0 if a does not take values in an abelian factor of the gauge group. Substituting this back into the Lagrangian one nds

L = Tr 41 F F i D

 

+

 

g2 TrF F

 

 

 

 

 

 

 

 

 

 

 

32 2

 

 

 

 

 

+

(D z)yD z i D

 

 

 

i j 2

 

e

y

 

 

 

 

 

 

 

 

 

+

ip2gzy ip2g z 2 @zi@zj

@zi@zj

 

i

 

j

 

 

 

 

 

 

 

 

 

 

1 @2W

1

 

@2W

 

 

 

V (zy; z) + total derivative ;

where the scalar potential V (zy; z) is given by

V (zy; z) = fyf + 2 D2

=

 

@zi

 

2

+ 2

 

 

zyT az + a

 

:

1

 

i

 

@W

 

 

g2

a

 

 

 

2

 

 

 

X

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.30)

(5.31)

5.3Supersymmetric QCD

At this point we have all the ingredients to write the action for supersymmetric QCD. The gauge group is SU(3). (More generally, one could consider SU(N).) There are then gauge bosons va, a = 1; : : : 8 called the gluons, as well as their supersymmetric partners, the 8 gauginos or gluinos a. If one considers pure

32

5.3. SUPERSYMMETRIC QCD

33

N = 1 \glue", this is all there is. To describe N = 1 QCD however, one also has to add quarks transforming in the 3 of SU(3) as well as antiquarks in the

3. They are associated with chiral super elds. More precisely there are chiral p

super elds QiL = qLi + 2 Li fLi , i = 1; 2; 3, and L = 1; : : : Nf labels theavours. These elds transform in the 3 representation of the gauge group and

correspond to left-handed quarks (or right-handed antiquarks). There are also

 

 

 

 

p

 

 

eiL

 

 

 

 

 

 

 

 

 

 

 

Q

=

q

iL +

2

 

f

i

= 1

;

2

;

3 and

L

= 1

; : : : N

f .

chiral super elds ei;L

 

 

eiL,

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

They transform in the 3 representation of the gauge group and correspond to left-handed antiquarks (or right-handed quarks).

tential. Since all terms in the Lagrangian

Note that the gauge group does not contain any U(1) factor, and hence no Fayet-Iliopoulos term can appear. The component Lagrangian for massless susy QCD then is given by (5.30) with z = (q; q) , a = 0 and vanishing superpoare diagonal in the avour indices of

e

the quarks and separately in the avour indices of the antiquarks, there is an

SU(Nf )L SU(Nf )R global symmetry. In addition there is a U(1)V

 

acting as

Q

!

eivQ; Q

!

e ivQ, as well as an U(1)

 

acting as Q

!

eiaQ; Q

eiaQ.

 

 

e

e

R

 

 

 

A

 

 

 

!

 

 

iq

 

!

iq

e

We also

 

symmetry acting as Q(x; )

e

e

 

 

e

 

 

have the global U(1)

 

R

 

 

Q(x; e

 

),

 

 

 

e

 

 

 

 

f L

f R

 

 

 

 

 

 

 

 

 

Q(x; ) ! e iqQ(x; eiq ) and V (x; ;

 

) ! V (x; eiq ; e iq

 

). Thus the global sym-

metry group in the massless case is U(N )

 

U(N )

U(1)

 

 

 

 

 

 

 

 

Due to the presence of both representations 3 and 3 of the gauge group, one may add a gauge invariant superpotential

Q

m

L;M

Qi Q

:

(5.32)

W (Q; e) =

 

L ei;M

 

This is a quark mass term and mL;M is the Nf Nf mass matrix. Using the global symmetry of the other terms in the Lagrangian (which is just the massless Lagrangian) one can diagonalise the superpotential so that it reads

 

e

X

 

e

(5.33)

W (Q; Q) =

mLQLi Qi;L :

 

 

L

 

 

 

For the gauge group SU(3) one

could

also

add the gauge

invariant terms

aLMN ijkQLi QMj QNk and aLMN ijkQiLQjM QkN .

However, they explicitly violate

e

will not be considered. Then nally one arrives

baryon number conservation and

e

e

e

 

 

at the following Lagrangian (where we suppress as much as possible all gauge and avour indices):

L = Tr 41 F F i D

 

+

 

 

g2 TrF F

 

 

 

32 2

 

+

(D q)yD

q + (D q)yD

q i

 

D

i e

 

 

 

 

 

(5.34)

 

D e

 

 

 

 

 

 

 

 

 

gqey

 

e ip

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

+ ip

 

gqy + ip

 

 

 

 

 

 

 

 

 

ip

 

g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

e

 

2

g q

 

2

e

q

 

 

1

P

 

 

 

 

e

e

 

 

 

 

 

e

e

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

L

L +

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L mL

L

L V (q; q; qy; qy) + total derivative ;

 

33

34

CHAPTER 5. SUPERSYMMETRIC GAUGE THEORIES

where the scalar potential V is given by

 

 

 

 

 

 

 

Nf

qLy qL + qLy qL

+

g2 8

qyT aq + qyT aq

2

V (q; q; qy; qy) = L=1 mL2

2 a=1

: (5.35)

 

X

 

 

 

X

 

 

 

e e

 

e e

 

 

 

 

e e

 

34

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]