Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Programmirovanie (1)

.pdf
Скачиваний:
7
Добавлен:
27.05.2015
Размер:
841.06 Кб
Скачать

Поток - это файл или физическое устройство (т.е. принтер или монитор, в UNIX-системах физические устройства представляются файлами), которые управляются через указатель на поток.

Существует внутренняя C-структура данных FILE, которая используется для работы с потоками и определена в stdio.h. При вводе/выводе посредством потоков необходимо использовать эту структуру FILE.

Файловая система языка С предназначена для работы с самыми разными устройствами, в том числе терминалами, дисководами и накопителями на магнитной ленте. Даже если какое-то устройство сильно отличается от других, буферизованная файловая система все равно представит его в виде логического устройства, которое называется потоком. Все потоки ведут себя похожим образом. И так как они в основном не зависят от физических устройств, то та же функция, которая выполняет запись в дисковый файл, может ту же операцию выполнять и на другом устройстве, например, на консоли. Потоки бывают двух видов: текстовые и двоичные.

Текстовые потоки

Текстовый поток — это последовательность символов. В стандарте С считается, что текстовый поток организован в виде строк, каждая из которых заканчивается символом новой строки. Однако в конце последней строки этот символ не является обязательным. В текстовом потоке по требованию базовой среды могут происходить определенные преобразования символов. Например, символ новой строки может быть заменен парой символов — возврата каретки и перевода строки. Поэтому может и не быть однозначного соответствия между символами, которые пишутся (читаются), и теми, которые хранятся во внешнем устройстве. Кроме того, количество тех символов, которые пишутся (читаются), и тех, которые хранятся во внешнем устройстве, может также не совпадать из-за возможных преобразований.

Двоичные потоки

Двоичный поток — это последовательность байтов, которая взаимно однозначно соответствует байтам на внешнем устройстве, причем никакого преобразования символов не происходит. Кроме того, количество тех байтов, которые пишутся (читаются), и тех, которые хранятся на внешнем устройстве, одинаково. Однако в конце двоичного потока может добавляться определяемое приложением количество нулевых байтов. Такие нулевые байты, например, могут использоваться для заполнения свободного места в блоке памяти незначащей информацией, чтобы она в точности заполнила сектор на диске.

Файлы

В языке С файлом может быть все что угодно, начиная с дискового файла и заканчивая терминалом или принтером. Поток связывают с определенным файлом, выполняя операцию открытия. Как только файл открыт, можно проводить обмен информацией между ним и программой.

Но не у всех файлов одинаковые возможности. Например, к дисковому файлу прямой доступ возможен, в то время как к некоторым принтерам — нет. Таким образом, мы пришли к одному важному принципу, относящемуся к системе ввода/вывода языка С: все потоки одинаковы, а файлы — нет.

Если файл может поддерживать запросы на местоположение (указатель текущей позиции), то при открытии такого файла указатель текущей позиции в файле устанавливается в начало. При чтении из файла (или записи в него) каждого символа указатель текущей позиции увеличивается, обеспечивая тем самым продвижение по файлу.

Файл отсоединяется от определенного потока (т.е. разрывается связь между файлом и потоком) с помощью операции закрытия. При закрытии файла, открытого с целью вывода, содержимое (если оно есть) связанного с ним потока записывается на внешнее устройство. Этот процесс, который обычно называют дозаписью[1] потока, гарантирует, что никакая информация случайно не останется в буфере диска. Если программа завершает работу нормально, т.е. либо main() возвращает управление операционной системе, либо вызывается exit(), то все файлы закрываются автоматически. В случае аварийного завершения работы программы, например, в случае краха или завершения путем вызова abort(), файлы не закрываются.

У каждого потока, связанного с файлом, имеется управляющая структура, содержащая информацию о файле; она имеет тип FILE. В этом блоке управления файлом[2] никогда ничего не меняйте[3].

Если вы новичок в программировании, то разграничение потоков и файлов может показаться излишним или даже "заумным". Однако надо помнить, что основная цель такого разграничения

— это обеспечить единый интерфейс. Для выполнения всех операций ввода/вывода следует использовать только понятия потоков и применять всего лишь одну файловую систему. Ввод или вывод от каждого устройства автоматически преобразуется системой ввода/вывода в легко управляемый поток.

Потоковый I/O -- буферизированный: Это означает, что блок данных фиксировнного размера читаентся/пишется в файл не непосредственно, а через временную область хранения (буфер).

Это повышает эффективность I/O, но будьте осторожны: данные, записанные в буфер, не появяться в файле или на устройстве, пока буфер не будет очищен. Всякое неуспешное завершение программы может вызвать проблемы. Потоковый I/O эффективен для символов и строк.

Небуферизированный ввод-вывод

Этот тип ввода-вывода позволяет избавиться от генерирования дополнительных данных, что свойственно для буферизированного ввода-вывода (операций копирования данных и выделение/освобождение буфера) и прямого ввода-вывода (создания и уничтожения списка дескрипторов памяти), но за это приходится расплачиваться ограниченностью применения данного типа ввода-вывода. При небуферизированном вводе-выводе драйверу непосредственно передается адрес буфера запросившего приложения. Внимательный читатель быстро догадается, что, поскольку виртуальный адрес имеет смысл только в контексте определенного процесса или потока, драйвер должен вызываться в контексте запросившего приложения. Более того, драйвер должен выполнить операцию в этом же контексте (т.е. драйвер не может поместить запрос в очереди для последующего выполнения в произвольном контексте).

10.

Что касается файловой системы языка С, то в начале выполнения программы автоматически открываются три потока. Это stdin (стандартный поток ввода), stdout (стандартный поток вывода)

и stderr (стандартный поток ошибок). Обычно эти потоки направляются к консоли, но в средах, которые поддерживают перенаправление ввода/вывода, они могут быть перенаправлены операционной системой на другое устройство. (Перенаправление ввода/вывода поддерживается, например, такими операционными системами, как Windows, DOS, UNIX и OS/2.)

Так как стандартные потоки являются указателями файлов, то они могут использоваться системой ввода/вывода языка С также для выполнения операций ввода/вывода на консоль.

Вообще говоря, stdin используется для считывания с консоли, a stdout и stderr — для записи на консоль.

В роли указателей файлов потоки stdin, stdout и stderr можно применять в любой функции, где используется переменная типа FILE *. Например, для ввода строки с консоли можно написать примерно такой вызов fgets():

char str[255];

fgets(str, 80, stdin);

Ввод/вывод в C++ осуществляется с помощью потоков библиотеки C++, доступных при подключении заголовочного файла iostream.h (в VC++.NET – объекта-заголовка iostream). Поток представляет собой объект какого-либо потокового класса.

Потоковые классы сконструированы на основе базового класса ios:

ios – базовый потоковый класс;

istream – класс входных потоков;

ostraem – класс выходных потоков;

iostream – класс двунаправленных потоков ввода/вывода.

В потоковые классы включены операторы добавления данных в поток << и извлечения данных из потока >>.

На основе класса istream в библиотеке C++ объявлен объект-поток cin, представляющий собой стандартный буферизованный входной поток, связанный обычно с клавиатурой консоли. Извлечение данных из потока имеет следующую форму записи:

int a;

float b;

cin >> a >> b;

На основе класса ostream объявлен объект-поток cout, представляющий собой стандартный буферизованный выходной поток, связанный обычно с дисплеем консоли.

Форма записи добавления данных в поток следующая:

cout << a << b;

при этом значения переменных a и b выводятся на экран без разделителя и в формате, заданном по умолчанию. Перемещение курсора на следующую строку экрана после вывода данных не происходит.

Для перевода курсора на новую строку используется манипулятор endl:

cout << a <<" "<< b << endl;

В потоках cin и cout можно форматировать данные, для этого используются специальные манипуляторы, доступные через заголовочный файл iomanip.h.

11.

12.

Абстракция

Абстрагирование — это способ выделить набор значимых характеристик объекта, исключая из рассмотрения незначимые. Соответственно, абстракция — это набор всех таких характеристик.[1]

Инкапсуляция

Инкапсуляция — это свойство системы, позволяющее объединить данные и методы, работающие с ними в классе, и скрыть детали реализации от пользователя.[1]

Наследование

Наследование — это свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс — потомком, наследником или производным классом.[1]

Полиморфизм

Полиморфизм — это свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.[1]

Класс

Класс является описываемой на языке терминологии (пространства имён) исходного кода моделью ещё не существующей сущности (объекта). Фактически он описывает устройство объекта, являясь своего рода чертежом. Говорят, что объект — это экземпляр класса. При этом в некоторых исполняющих системах класс также может представляться некоторым объектом при выполнении программы посредством динамической идентификации типа данных. Обычно классы разрабатывают таким образом, чтобы их объекты соответствовали объектам предметной области.

Объект

Сущность в адресном пространстве вычислительной системы, появляющаяся при создании экземпляра класса или копирования прототипа (например, после запуска результатов компиляции и связывания исходного кода на выполнение).

Прототип

Прототип — это объект-образец, по образу и подобию которого создаются другие объекты. Объекты-копии могут сохранять связь с родительским объектом, автоматически наследуя изменения в прототипе; эта особенность определяется в рамках конкретного языка.

В центре ООП находится понятие объекта. Объект — это сущность, которой можно посылать сообщения, и которая может на них реагировать, используя свои данные. Объект — это экземпляр класса. Данные объекта скрыты от остальной программы. Сокрытие данных называется инкапсуляцией.

Наличие инкапсуляции достаточно для объектности языка программирования, но ещё не означает его объектной ориентированности — для этого требуется наличие наследования.

Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм; то есть возможность объектов с одинаковой спецификацией иметь различную реализацию.

Как уже говорилось выше, в современных объектно-ориентированных языках программирования каждый объект является значением, относящимся к определённому классу. Класс представляет собой объявленный программистом составной тип данных, имеющий в составе:

Поля данных

Параметры объекта (конечно, не все, а только необходимые в программе), задающие его состояние (свойства объекта предметной области). Иногда поля данных объекта называют свойствами объекта, из-за чего возможна путаница. Физически поля представляют собой значения (переменные, константы), объявленные как принадлежащие классу.

Методы

Процедуры и функции, связанные с классом. Они определяют действия, которые можно выполнять над объектом такого типа, и которые сам объект может выполнять.

Классы могут наследоваться друг от друга. Класс-потомок получает все поля и методы классародителя, но может дополнять их собственными либо переопределять уже имеющиеся. Большинство языков программирования поддерживает только единичное наследование (класс может иметь только один класс-родитель), лишь в некоторых допускается множественное наследование — порождение класса от двух или более классов-родителей. Множественное наследование создаёт целый ряд проблем, как логических, так и чисто реализационных, поэтому в полном объёме его поддержка не распространена. Вместо этого в 1990-е годы появилось и стало активно вводиться в объектно-ориентированные языки понятие интерфейса. Интерфейс — это класс без полей и без реализации, включающий только заголовки методов. Если некий класс наследует (или, как говорят, реализует) интерфейс, он должен реализовать все входящие в него методы. Использование интерфейсов предоставляет относительно дешёвую альтернативу множественному наследованию.

Взаимодействие объектов в абсолютном большинстве случаев обеспечивается вызовом ими методов друг друга.

Инкапсуляция обеспечивается следующими средствами

Контроль доступа

Поскольку методы класса могут быть как чисто внутренними, обеспечивающими логику функционирования объекта, так и внешними, с помощью которых взаимодействуют объекты, необходимо обеспечить скрытость первых при доступности извне вторых. Для этого в языки вводятся специальные синтаксические конструкции, явно задающие область видимости каждого члена класса. Традиционно это модификаторы public, protected и private, обозначающие, соответственно, открытые члены класса, члены класса, доступные только из классов-потомков и скрытые, доступные только внутри класса. Конкретная номенклатура модификаторов и их точный смысл различаются в разных языках.

Методы доступа

Поля класса, в общем случае, не должны быть доступны извне, поскольку такой доступ позволил бы произвольным образом менять внутреннее состояние объектов. Поэтому поля обычно объявляются скрытыми (либо язык в принципе не позволяет обращаться к полям класса извне), а для доступа к находящимся в полях данным используются специальные методы, называемые методами доступа. Такие методы либо возвращают значение того или иного поля, либо производят запись в это поле нового значения. При записи метод доступа может проконтролировать допустимость записываемого значения и, при необходимости, произвести другие манипуляции с данными объекта, чтобы они остались корректными (внутренне согласованными). Методы доступа называют ещё аксессорами (от англ. access — доступ), а по отдельности — геттерами (англ. get — чтение) и сеттерами (англ. set — запись)[6].

ООП ориентировано на разработку крупных программных комплексов, разрабатываемых командой программистов (возможно, достаточно большой). Проектирование системы в целом, создание отдельных компонентов и их объединение в конечный продукт при этом часто выполняется разными людьми, и нет ни одного специалиста, который знал бы о проекте всё.

Объектно-ориентированное проектирование состоит в описании структуры и поведения проектируемой системы, то есть, фактически, в ответе на два основных вопроса:

Из каких частей состоит система.

В чём состоит ответственность каждой из частей.

13.

Инкапсуляция

Инкапсуляция есть объединение в единое целое данных и алгоритмов обработки этих данных. В рамках ООП данные называются полями объекта, а алгоритмы - объектными методами.

Инкапсуляция позволяет в максимальной степени изолировать объект от внешнего окружения. Она существенно повышает надежность разрабатываемых программ, т.к. локализованные в объекте алгоритмы обмениваются с программой сравнительно небольшими объемами данных, причем количество и тип этих данных обычно тщательно контролируются. В результате замена или модификация алгоритмов и данных, инкапсулированных в объект, как правило, не влечет за собой плохо прослеживаемых последствий для программы в целом (в целях повышения защищенности программ в ООП почти не используются глобальные переменные).

Другим немаловажным следствием инкапсуляции является легкость обмена объектами, переноса их из одной программы в другую. Можно сказать, что ООП «провоцирует» разработку библиотек объектов, таких как Turbo Vision.

Наследование

Наследование есть свойство объектов порождать своих потомков. Объект-потомок автоматически наследует от родителя все поля и методы, может дополнять объекты новыми полями и заменять (перекрывать) методы родителя или дополнять их.

Принцип наследования решает проблему модификации свойств объекта и придает ООП в целом исключительную гибкость. При работе с объектами программист обычно подбирает объект, наиболее близкий по своим свойствам для решения конкретной задачи, и создает одного или нескольких потомков от него, которые «умеют» делать то, что не реализовано в родителе.

Последовательное проведение в жизнь принципа «наследуй и изменяй» хорошо согласуется с поэтапным подходом к разработке крупных программных проектов и во многом стимулирует такой подход.

Полиморфизм

Полиморфизм - это свойство родственных объектов (т.е. объектов, имеющих одного общего родителя) решать схожие по смыслу проблемы разными способами. В рамках ООП поведенческие свойства объекта определяются набором входящих в него методов. Изменяя алгоритм того или иного метода в потомках объекта, программист может придавать этим потомкам отсутствующие у родителя специфические свойства. Для изменения метода необходимо перекрыть его в потомке, т.е. объявить в потомке одноименный метод и реализовать в нем нужные действия. В результате в объекте-родителе и объекте-потомке будут действовать два одноименных метода, имеющие разную алгоритмическую основу и, следовательно, придающие объектам разные свойства. Это и называется полиморфизмом объектов.

14.

Наиболее важный аспект разработки программного обеспечения — ясно понимать, что именно вы пытаетесь построить. — Бьярн Страуструп (Bjarne Stroustrup.

В С++ члены класса классифицируются в соответствии с правами доступа на следующие три кате­гории: публичные (public), частные (private) и защищенные (protected). Любая функция програм­мы имеет доступ к публичным членам. Доступ к частному члену имеют только функциичлены класса или функции-друзья класса. Защищенные члены аналогичны частным членам. Разница между ними появляется только при наследовании классов.

Когда один класс наследует другой, все публичные члены базового класса становятся публич­ными членами производного класса. В противоположность этому частные члены базового класса не доступны внутри производного класса. Защищен­ный член подобен частному, за исключением механизма наследования. При наследовании защи­щенного члена производный класс также имеет к нему доступ. Таким образом, указав специфи­катор доступа protected, можно позволить использовать член внутри иерархии классов и запретить доступ к нему извне этой иерархии.

В списке членов класса можно объявлять переменные, функции, классы, перечисления, а также дружественные функции и классы. Член класса не может объявляться в списке членов класса дважды. Это относиться и к функциям (хотя могут быть функции с одним именем, но разным набором формальных параметров). Кроме того, нельзя объявить в классе переменную и функцию с одним именем. Список членов класса определяет полный набор членов этого класса. Нельзя добавлять к классу члены ещё в каком-то месте. Член класса не может иметь инициализатора. Член класса не может быть объявлен со спецификациями класса памяти auto, extern и register. Инициализация объектов класса осуществляется с помощью конструкторов.

Член класса может быть:

приватным (private) – это значит, что его имя может употребляться лишь внутри функций-членов класса и друзей класса, в котором этот член класса объявлен;

защищённым (protected) – это значит, что его имя может употребляться лишь внутри функцийчленов класса, друзей этого класса и производных от него классов;

публичным (public) – это значит, что его имя может употребляться внутри любой функции (а также и вне функций в инициализаторах).

Функция, объявленная в классе без спецификатора friend, называется функцией-членом класса. Её вызов имеет соответствующий синтаксис. Описание функции-члена класса относиться к области действия класса. Это означает, что функция-член класса может непосредственно использовать имена членов своего класса.

В объявлении функции после списка параметров можно добавить модификатор const. Это будет означать, что функция не меняет состояние объекта, к которому она применяется. Суффикс const является частью типа функции и должен записываться, когда функция определяется вне класса.

Константную функцию-член класса можно вызвать как для константного, так и для неконстантного объекта, в то время как неконстантную функцию можно вызвать только для объекта, не являющегося константой.

15.

Конструктор предназначен для инициализации объекта. Он вызывается автоматически при создании объекта класса Имя конструктора совпадает с именем класса. Ниже перечислены свойства конструкторов.

Конструктор не возвращает значение, даже типа void.

Класс может иметь несколько конструкторов с разными параметрами для разных видов инициализации.

Если программист не указал ни одного конструктора или какие-то поля не были инициализированы, полям значимых типов присваивается нуль, полям ссылочных типов — значение null.

Конструктор, вызываемый без параметров, называется конструктором по умолчанию.

Конструктор по умолчанию (англ. default constructor), в объектно-ориентированных языках программирования — конструктор, который может быть вызван без аргументов.

В C++ и Java если нет явным образом опредёленных конструкторов в классе, то компилятор использует конструктор по умолчанию, опредёленный неявным способом, который аналогичен «чистому»[уточнить] конструктору по умолчанию. Поэтому, класс не гарантирует наличия конструктора по умолчанию (то есть когда программист явным образом определяет только конструктор, который не по умолчанию). Некоторые программисты явным образом задают конструктор по умолчанию по привычке, чтобы не забыть в дальнейшем, но это не обязательно. В C++ только массивы имеют конструкторы по умолчанию, которые создают каждый элемент при помощи конструктора по умолчанию для их типа.

Конструктором копирования (в англоязычной литературе используется термин copy constructor) называется специальный конструктор в языке программирования C++, применяемый для создания нового объекта как копии уже существующего. Такой конструктор принимает как минимум один аргумент: ссылку на копируемый объект.

Обычно компилятор автоматически создает конструктор копирования для каждого класса (известные как неявные конструкторы копирования, т.е. конструкторы копирования, заданные неявным образом), но в некоторых случаях программист создает конструктор копирования, называемый в таком случае явным конструктором копирования (или "конструктором копирования, заданным явным образом"). В подобных случаях компилятор не создает неявные конструкторы.

Конструктор копирования в основном необходим когда объект имеет указатель или неразделяемую ссылку, как например, на файл, в этом случае вам обычно также потребуется деструктор и оператор присваивания (см. Правило трех).

Деструктор́ — специальный метод класса, служащий для деинициализации объекта (например освобождения памяти). Деструктор автоматически запускается каждый раз, когда программа уничтожает объект.

16.

Одной из привлекательных особенностей языкаC++ является возможность распространения действия стандартных операций на операнды, для которых эти операции первоначально в языке не предполагались. Например, еслиS1 иS2 - символьные строки, то их соединение(конкатенацию) удобно было бы обозначить какS1+S2. Однако бинарная операция+ в языкеC++ предназначена для арифметических операндов и не предусматривает строковых операндов. Но еслиS1 иS2 определить как объекты некоторого класса, то для них можно ввести операцию+, выполняемую по правилам, которые выбрал программист. Для этих целей языкC++ позволяет распространить действие любой стандартной операции на новые типы данных, вводимые пользователем. Распространить операцию на новые типы данных позволяет механизм перегрузки стандартных операций. Составители: Попов А.С., Еремин М.А. 4 При перегрузке операций нельзя вводить новые лексические обозначения операций, даже формируя их из допустимых символов. Все операцииC++ могут быть перегружены, кроме операций точка(.), разыменование(*), разрешение области действия(::), условная(?:) и sizeof, #, ##, директивы препроцессора и некоторые другие. Операции =, [], (),-> и ->* могут быть перегружены только как нестатические функции-компоненты. Они не могут быть перегружены для перечислимых типов. Все остальные операции можно перегружать, чтобы применять их к каким-то новым типам объектов, вводимым пользователем. Кроме того, многие операции уже перегружены вC++. Например, арифметические операции применяются к разным типам данных– целым числам,

Четыре важных ограничения, накладываемых на отношения дружественности в C++:

действительным и т.д., именно в результате того, что они перегружены. тип имя_класса::operator#(список_аргументов) Чтобы перегрузить стандартные операции для АТД, необходимо специальным образом их определить для объектов данного АТД. Это возможно, если хотя бы один из операндов является объектом некоторого класса, то есть введенного пользователем типа. Переопределять операции для стандартных типов данных нельзя. Для распространения действия операции на новые данные Объектно-ориентированные языки программирования. Практикум. 5 программист определяет специальную функцию, называемую«операция-функция», «функция-операция» или«операторная функция» (мы приводим несколько вариантов перевода термина«operator function» на русский язык). Формат ее определения:

тип_возращаемого_значения operator знак_операции

(спецификация_параметров_операции-функции)

{

операторы_тела_операции-функции

}

При необходимости может добавляться и прототип операции-функции. Например, для распространения действия бинарной операции* на объекты класса Т может быть введена функция с заголовком: T operator*(Tx, Ty) Количество параметров у операции-функции зависит от арности операции и от способа определения функции. Чтобы явная связь с классом была обеспечена, операция-функция должна быть либо компонентом класса, либо она должна быть определена в классе как дружественная, либо у нее должен быть хотя бы один параметр типа класс(или ссылка на класс). Рассмотрим иллюстрацию перегрузки

{

// действия, определенные применительно к классу

}

Функции-друзья — это функции, не являющиеся функциями-членами и тем не менее имеющие доступ к защищённым и закрытым членам класса. Они должны быть объявлены в теле класса как friend. Дружественной может быть объявлен как весь класс, так и функция-член класса. Если класс A — объявлен в классе B как друг, то все собственные (не унаследованные) функции-члены класса A могут обращаться к любым членам класса

B.

Дружественность не транзитивна. Если A объявляет другом B, а B, в свою очередь, объявляет другом C, то C не становится автоматически другом для A. Для этого A должен явно объявить C своим другом.

Дружественность не взаимна. Если класс A объявляет другом класс B, то он не становится автоматически другом для B. Для этого должно существовать явное объявление дружественности A в классе B.

Дружественность не наследуется. Если A объявляет класс B своим другом, то потомки B не становятся автоматически друзьями A. Для этого каждый из них должен быть объявлен другом A в явной форме.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]