Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

СОКИ ЖКТ

.docx
Скачиваний:
63
Добавлен:
16.05.2015
Размер:
187.42 Кб
Скачать

     Пептид-гидролазы. Кишечный сок содержит следующие главные группы пептид-гидролаз (протеаз): катепсины,карбоксипептидазы и аминопептидазы. Они наиболее активны в слабоЩёлочной среде (рН = 7,2 ÷ 7,8) и разрушают внутренние пептидные связи. Таким образом, внутренние пептидные связи сложных пищевых белков в пищеварительном тракте последовательно разрывают несколько протеаз: пепсин желудочного сока, трипсин и химотрипсин сока поджелудочной железы, катепсины, карбоксипептидазы и аминопептидазы. Последнние три группы ферментов содержатся в соке двенадцатиперстной кишки (бруннеровы железы, Brunner, Johann, 1653-1727, швейцарский анатом) и в кишечном соке желёз нижележащих отделов тонкой кишки (либеркюновы железы, Johann Nathanael Lieberkühn, 1711-1756, германский анатом). Все протеазы тонкой кишки выделяются в виде неактивных проферментов. Их активация представляет собой цепь протеолитических реакций. Эта цепь реакций запускается каталитическим действием фермента тонкой кишки -энтеропептидазы (энтерокиназы). Энтерокиназа открыта в 1899 г. российским ученым Н.П. Шеповальниковым в лаборатории И.П. Павлова в Императорской военно-медицинской Академии. Последующие реакции в цепи активации осуществляются уже активированными протеазами. Активированные ферменты катализируют гидролиз пищевых пептидов. При этом разрушаются концевые пептидные связи с образованием олигопептидов или свободных аминокислот.       См. в отдельном окне схему: Переваривание и всасывание белков и продуктов их гидролиза в желудочно-кишечном тракте, цитата: McMurry and Castellion. Fundamentals of General, Organic, and Biological Chemistry . Third Edition.       Гликозидазы. По сравнению с вышележащими отделами (полость рта, желудок) в тонкой кишке происходит наиболееинтенсивное переваривание углеводов - крахмала и гликогена с участием α‑амилазы сока поджелудочной железы иα‑амилазы кишечного сока.       Фермент α‑амилаза открыта в 1870 г. Доброславиным А.П. (Доброславин Алексей Петрович, 1842-1889, российский ученый, профессор гигиены в Императорской военно-медицинской Академии)       В начальном отделе тонкой кишки - в двенадцатиперстной кишке кислотность химуса значительно снижается. Средастановится практически нейтральной, оптимальной для максимальной активности α‑амилазы. Поэтому гидролиз крахмала и гликогена с образованием мальтозы, который начинался в полости рта и в желудке с участием α‑амилазы слюны, в тонкой кишке завершается.       Образовавшаяся в результате начальных стадий гидролиза углеводов, мальтоза гидролизуется с участием ферментамальтазы (α‑глюкозидазы) с образованием двух молекул глюкозы.       Пищевые продукты могут содержать углевод сахарозу. Сахароза расщепляется при участии сахаразы. При этом образуются глюкоза и фруктоза.       Пищевые продукты могут содержать углевод лактозу. Лактоза гидролизуется с участием фермента лактазы. В результате гидролиза лактозы образуются глюкоза и галактоза.       Пищевые продукты могут содержать углевод трегалозу. Трегалоза гидролизуется с участием фермента трегалазы с образованием двух молекул глюкозы.       Таким образом углеводы, содержащиеся в пищевых продуктах, постепенно расщепляются на составляющие их моносахариды: глюкозу, фруктозу и галактозу. Конечные стадии гидролиза углеводов осуществляются непосредственно намембране микроворсинок энтероцитов в их гликокаликсе. Благодаря такой последовательности процессов, завершающие стадии гидролиза и всасывание тесно сопряжены (мембранное пищеварение).       Моносахариды и небольшое количество дисахаридов и всасываются энтероцитами тонкой кишки и попадают в кровь.Интенсивность всасывания моносахаридов различна. Всасывание маннозы, ксилозы и арабинозы осуществляется преимущественно путем простой диффузии. Всасывание же большинства других моносахаридов происходит за счет активного транспорта. Легче других моносахаридов всасываются глюкоза и галактоза. Мембраны микроворсинок энтероцитов содержатсистемы переносчиков, способных связывать глюкозу и Na+ и переносить их через цитоплазматическую мембрану энтероцита в его цитозоль. Энергия, необходимая для такого активного транспорта, образуется при гидролизе АТФ.       Большая часть моносахаридов, всосавшихся в микрогемациркуляторное русло кишечных ворсинок, попадают с потоком крови через воротную вену в печень. Небольшое количество (~10%) моносахаридов поступает по лимфатическим сосудам в венозную систему. В печени значительная часть всосавшейся глюкозы превращается в гликоген. Гликоген резервируется в клетках печени (гепатоциты) в виде гранул.       См. в отдельном окне схему: Переваривание и всасывание углеводов и продуктов их гидролиза в желудочно-кишечном тракте, цитата: McMurry and Castellion. Fundamentals of General, Organic, and Biological Chemistry . Third Edition.      Липазы. Натуральные липиды пищи (триацилглицеролы) представляют собой по-преимуществу жиры или масла. Они частично могут всасываться в желудочно-кишечном тракте без предварительного гидролиза. Непременным условием такого всасывания является их предварительное эмульгирование. Триацилглицеролы могут всосаться лишь тогда, когда средний диаметр частичек жира в эмульсии не превышает 0,5 мкм. Основная часть жиров всасывается лишь в виде продуктов их ферментативного гидролиза: хорошо растворимых в воде жирных кислот, моноглицеридов и глицерола.       В процессе физической и химической обработки потребляемой пищи в полости рта, жиры не подвергаются гидролизу. Слюнане содержит эстераз (липаз) - ферментов расщепляющих липиды и их продукты. Переваривание жиров начинается в желудке. Сжелудочным соком секретируется липаза - фермент, расщепляющий жиры. Однако её действие на жиры в желудке малозначимо по ряду причин. Во-первых, из-за небольшого количества липазы, секретируемой с желудочным соком. Во-вторых, в желудке среда (кислотность/щёлочность) неблагоприятна для максимального действия липазы. Среда оптимальная для действия липазы должна иметь слабую кислотность или быть близкой к нейтральной, ~pH = 5,5 ÷ 7,5. Реально, среднеезначение кислотности содержимого желудка значительно выше, ~ pH = 1,5. В-третьих, как и все пищеварительные ферменты, липаза является поверхностно-активным веществом. Совокупная поверхность субстрата (жиров) действия ферментов в желудке невелика. В общем, чем больше поверхность контакта фермента с веществом, субстратом гидролиза, тем больше результатгидролиза. Значительная поверхность контакта фермент-субстрат может существовать когда вещество-субстрат находится либо в истинном растворе, либо в виде мелкодисперсной эмульсии. Максимальная поверхность контакта существует в водных истинных растворах веществ-субстратов. Частички вещества в воде-растворителе имеют минимальные размеры, и совокупная поверхность частичек субстрата в растворе весьма велика. Меньшая поверхность контакта может существовать в растворах-эмульсиях. И еще меньшая поверхность контакта может существовать в растворах-суспензиях. Жиры нерастворимы в воде. Жиры пищи, переработанной в полости рта и попавшей в желудок, представляют собой крупные частицы, перемешанные с образующимся химусом. Веществ-эмульгаторов в желудочном соке нет. В составе химуса может быть незначительное количество эмульгированных жиров пищи, попавших в желудок с молоком или мясными бульонами. Таким образом, у взрослых в желудке отсутствуют благоприятные условия для расщепления жиров. Некоторые особенности переваривания жиров существуют у детей грудного возраста.       В слизистой оболочке корня языка и примыкающей к нему области глотки у детей грудного возраста расположеныэкзокринные железы, секрет которых содержит липазу. Секреция этих желёз стимулируется при раздражениимеханорецепторов во время сосательных и глотательных движений при естественном кормлении грудью. Липаза полости рта получила определение лингвальной липазы. Поскольку грудное молоко быстро проглатывается ребенком, действие лингвальной липазы, перемешанной с молоком, начинает проявляться только в желудке. Оптимальной средой для максимального действия лингвальной липазы является среда с кислотностью приблизительно равной кислотности желудочного сока грудных детей, ~pH = 4,0 ÷ 5,0. Молекулы естественных жиров пищи, в том числе и грудного молока, имеют длинные и средние цепи, то есть по-преимуществу являются триацилглицеролами. Лингвальная липаза лучше всего расщепляет именно эти жиры. Известно, что организм способен приспосабливаться к внешним условиям. Это относится и к экзокринным железам желудочно-кишечного тракта, адаптирующимся к составу потребляемой пищи. С переменой характера питания, при взрослении и переходе от питания детей грудным молоком к питанию пищей взрослых, необходимость в лингвальной липазе уменьшается. Железы полости рта снижают количество секретируемой лингвальной липазы и её значимость в переваривании жиров уменьшается. У взрослых секреция лингвальной липазы незначительна.       Расщепление триацилглицеролов (жиров) в желудке взрослого человека невелико. Вместе с тем его результаты важны для расщепления жиров в тонкой кишке. В результате гидролиза жиров в желудке при участии липазы, образуются свободныежирные кислоты. Соли жирных кислот являются активным эмульгатором жиров. Химус желудка, в составе которого находятся жирные кислоты, транспортируется в начальный отдел тонкой кишки - в двенадцатиперстную кишку. При прохождении через двенадцатиперстную кишку химус перемешивается с жёлчью и с соком поджелудочной железы, содержащим липазу. В двенадцатиперстной кишке, кислотность химуса, обусловленная содержанием в нем соляной кислоты, нейтрализуется бикарбонатами сока поджелудочной железы и сока собственных желез (бруннеровы железы, duodenal glands, Brunner's glands, Brunner, Johann, 1653-1727, швейцарский анатом). При нейтрализации бикарбонаты разлагаются с образованием пузырьковуглекислого газа. Это способствует перемешиванию химуса с пищеварительными соками. Образуется суспензия - разновидностьраствора. Поверхность контакта ферментов с субстратом в суспензии увеличивается. Одновременно с нейтрализацией химуса и образованием суспензии происходит эмульгирование жиров. Небольшое количество свободных жирных кислот, образовавшихся в желудке под действием липазы, образуют соли жирных кислот. Они являются активным эмульгатором жиров. Кроме того, жёлчь, поступившая в двенадцатиперстную кишку и перемешанная с химусом, содержит натриевые соли жёлчных кислот. Соли жёлчных кислот, как и соли жирных кислот, растворимы в воде и являются еще более активным детергентом, эмульгатором жиров (см. схему модификация: Human Physiology. Dee Unglaub Silverthorn, Ph.D., University of Texas; William C. Ober, M.D.; Claire W. Garrison, R.N.; Andrew C. Silverthorn, M.D. URL: http://cwx.prenhall.com/bookbind/pubbooks/silverthorn2/ ).       Желчные кислоты являются основным конечным продуктом метаболизма холестерина. В жёлчи человека больше всего содержатся: холевая кислотадезоксихолевая кислота и хенодезоксихолевая кислота. В меньшем количестве в жёлчи человека содержатся: литохолевая кислота, а также аллохолевая и уреодезоксихолевая кислоты (стереоизомеры холевой и хенодезоксихолевой кислот). Жёлчные кислоты по большей части конъюгированы либо с глицином, либо с таурином. В первом случае они существуют в виде гликохолевойгликодезоксихолевойгликохенодезоксихолевой кислот (~65 ÷ 80% всех жёлчных кислот). Во втором случае они существуют в виде таурохолевойтауродезоксихолевой и таурохенодезоксихолевойкислот (~20 ÷ 35% всех жёлчных кислот). Поскольку эти соединения состоят из двух компонентов - жёлчной кислоты и глицина или таурина, их иногда называют парными жёлчными кислотами. Количественные соотношения между разновидностями конъюгатов могут меняться в зависимости от состава пищи. Если в составе пищи преобладают углеводы, то доля глициновых конъюгатов больше. Если в составе пищи преобладают белки, то больше доля тауриновых конъюгатов.       Наиболее эффективное эмульгирование жиров происходит при комбинированном действии на капельки жира трех веществ: солей жёлчных кислот, ненасыщенных жирных кислот и моноацилглицеролов. При таком действии поверхностное натяжениечастиц жира на разделе фаз жир/вода резко уменьшается. Крупные частицы жира распадаются на мельчайшие капельки. Мелкодисперсная эмульсия, содержащая указанную комбинацию эмульгаторов, очень стабильна, и укрупнения частичек жира не происходит. Совокупная поверхность капелек жира очень велика. Это обеспечивает большую вероятность взаимодействияжира с ферментом липазой и гидролиз жира.       Основная масса пищевых жиров (ацилглицеролов) расщепляется в тонкой кишке при участии липаз сока поджелудочной железы и липаз сока (собственных желёз) тонкой кишки. Фермент липаза был впервые обнаружен в середине прошлого века французским физиологом Клодом Бернаром (Claude Bernard, 1813‑1878). Липаза является гликопротеидом, легче всего расщепляющим эмульгированные триацилгицеролы в щёлочной среде ~рН 8 ÷ 9. Как и все пищеварительные ферменты, липаза выводится в тонкую кишку в виде неактивного профермента - пролипазы. Активация пролипазы в активную липазу происходит под действием жёлчных кислот и другого фермента сока поджелудочной железы - колипазы. При комбинации колипазы с пролипазой (в количественном соотношении 2:1) образуется активная липаза, участвующая в гидролизе эфирных связейтриацилглицеролов. Продуктами расщепления триацилглицеролов являются диацилглицеролы, моноацилглицеролы, глицерин и жирные кислоты. Все эти продукты могут всасываться в тонкой кишке. В кишечном соке содержится фермент фосфолипаза А, которая катализирует расщепление лецитина. В результате гидролиза образуются диглицерид и холинфосфат. Кроме того кишечный сок содержит холестеролэстеразу, катализирующую расщепление эфиров колестерола. В результате гидролиза образуются холестерол и жирная кислота. Нуклеазы кишечного сока катализируют расщепление нуклеиновых кислот.       Механизмы всасывания ацилглицеролов разного размера, а также жирных кислот с разной длиной углеродной цепи различны.       См. в отдельном окне схему: Переваривание и всасывание липидов и продуктов их гидролиза в желудочно-кишечном тракте, цитата: McMurry and Castellion. Fundamentals of General, Organic, and Biological Chemistry . Third Edition.       Кроме ферментов, катализирующих гидролиз пищевых веществ, то есть кроме пищеварительных ферментов, в соке поджелудочной железы есть ферменты, непосредственно не участвующие в переваривании пищевых продуктов, но важных в пищеварении вообще. Это лизоцим и муколизин.       Лизоцим (lysozyme, другое название мурамидаза, открыт в 1921 г. А. Флемингом, Alexander Fleming, 1881-1955, шотландский бактериолог, лауреат Нобелевской премии 1945 г. за открытие пенициллина) - фермент, который секретируется, резервируется и выводится клетками поверхностного эпителия слизистой оболочки желудка. Фермент лизоцим обнаружен во многих другихжидкостях организма (слёзная жидкость, слюна, слизь полости носа и др.). Это гидролаза, катализирующая гидролиз определенных связей в полисахаридах цитоплазматических мембран бактериальных клеток, что ведет к их разрушению. Так лизоцим выполняет функцию неспецифической антибактериальной защиты.       Муколизин (mucolysin; другое название муколитический фермент, mucolytic enzyme) - фермент катализирующий гидролизмукополисахаридов. В результате этого снижается вязкость секретов, содержащих муцин. Посредством муколизина можетрегулироваться количество слизи на поверхности слизистой оболочки желудка и в содержимом полости желудка. В чистом виде муколизин не выделен.       Как правило, конечные стадии гидролиза пищевых продуктов осуществляются в гликокаликсе и на мембране энтероцита(мембранное переваривание). Образовавшиеся при этом простые вещества, в частности свободные аминокислоты, здесь же всасываются через мембрану энтероцита в его цитозоль, затем - в интерстициальное пространство микроворсинок, и далее - в кровь их микрогемациркуляторного русла.

Жёлчь человека

Жёлчь[1][2]желчь[3] (лат. bilisдр.-греч. χολή) — жёлтая, коричневая или зеленоватая, горькая на вкус, имеющая специфический запах, выделяемая печенью и накапливаемая вжёлчном пузыре жидкость.

На рисунке изображены: пищевод (Esophagus), печень(Liver), желудок (Stomach), жёлчный пузырь (Gall bladder), общий жёлчный проток (Common bile duct),пузырный проток (Cystic duct), проток поджелудочной железы (Pancreatic duct), тонкая кишка (Small intestine).

Общая информация

Секреция жёлчи производится гепатоцитами — клетками печени. Жёлчь собирается в жёлчных протоках печени, а оттуда, черезобщий жёлчный проток поступает в жёлчный пузырь и в двенадцатиперстную кишку, где участвует в процессах пищеварения. Жёлчный пузырь выполняет роль резервуара, использование которого позволяет снабжать двенадцатиперстную кишку максимальным количеством жёлчи во время активной пищеварительной фазы, когда кишка наполняется частично переваренной в желудке пищей.

Жёлчь, выделяемая печенью (часть её направляется непосредственно в двенадцатиперстную кишку), называют «печёночной» (или «молодой»), а выделяемую жёлчным пузырём — «пузырной» (или «зрелой»).

Общие характеристики печёночной и пузырной жёлчи[4]

Параметры

Печеночная жёлчь

Пузырная жёлчь

Кислотность, pH

7,3 — 8,2

6,5 — 6,8

Удельная масса

1,01 — 1,02

1,02 — 1,048

Сухой остаток, г/л

26,0

133,5

Вода, %

95 — 97

80 — 86

Состав жёлчи человека

Основной компонент жёлчи — жёлчные кислоты (67 % — если исключить из рассмотрения воду). Половина — первичные жёлчные кислоты: холевая и хенодезоксихолевая, остальная часть — вторичные: дезоксихолеваялитохолеваяаллохолевая и урсодезоксихолевая кислоты.

Все жёлчные кислоты являются производными холановой кислоты. В гепатоцитах образуются первичные жёлчные кислоты — хенодезоксихолевая и холевая. После выделения жёлчи в кишечник под действием микробных ферментов из первичных жёлчных кислот получаются вторичные жёлчные кислоты. Они всасываются в кишечнике, с кровью воротной вены попадают в печень, а затем в жёлчь. В результате этого процесса образованные кишечными микробами вторичные жёлчные кислоты становятся равноправными компонентами жёлчи[источник не указан 215 дней]

Жёлчные кислоты в жёлчи находятся в виде конъюгатов (соединений) с глицином и тауриномгликохолевойгликохенодезоксихолевойтаурохолевой и других так называемых парных кислот. Жёлчь содержит значительное количество ионов натрия и калия, вследствие чего она имеет щелочную реакцию, а жёлчные кислоты и их конъюгаты иногда рассматривают как «жёлчные соли».

Содержание некоторых органических веществ в печёночной и пузырной жёлчи[4]

Компоненты

Печёночная, ммоль/л

Пузырная, ммоль/л

Жёлчные кислоты

35,0

310,0

Жёлчные пигменты

0,8 — 1,0

3,1 — 3,2

Холестерин

~3,0

25,0 — 26,0

Фосфолипиды

1,0

8,0

22 % жёлчи — фосфолипиды. Кроме того, в жёлчи имеются белки (иммуноглобулины А и М) — 4,5 %, холестерин — 4 %, билирубин — 0,3 %, слизь, органические анионы (глутатион и растительные стероиды), металлы (медьцинксвинециндиймагнийртуть и другие), липофильные ксенобиотики.[5]

Содержание ионов в печёночной и пузырной жёлчи[4]

Ионы

Печёночная, ммоль/л

Пузырная, ммоль/л

Натрий (Na+)

165,0

280,0

Калий (K+)

5,0

15,0

Кальций (Ca2+)

2,4 — 2,5

11,0 — 12,0

Хлор (Cl)

~90

14,5 — 15,0

Бикарбонаты (НСО3)

45 — 46

~8

Функции

Жёлчь выполняет целый комплекс разнообразных функций, большинство из которых связано с пищеварением, обеспечивая смену желудочного пищеварения на кишечное, ликвидируя действие опасного для ферментов поджелудочного сока пепсина и создавая благоприятные условия для этих ферментов.

Жёлчные кислоты, содержащиеся в жёлчи, эмульгируют жиры и участвуют в мицеллообразовании, активизируют моторику тонкой кишки, стимулирует продукцию слизи игастроинтенсинальных гормоновхолецистокинина и секретина, предупреждают адгезию бактерий и белковых агрегатов.

Жёлчь также участвует в выполнении выделительной функции. Холестеринбилирубин и ряд других веществ не могут фильтроваться почками и их выделение из организма происходит через жёлчь. Экскретируется с калом 70 % находящегося в жёлчи холестерина (30 % реабсорбируется кишечником), билирубин, а также перечисленные выше металлы, стероиды, глутатион.[5]

Жёлчь активирует Киназоген, превращая его в энтеропептидазу, которая в свою очередь активирует трипсиноген, превращая его в трипсин, таким образом, жёлчь активирует ферменты необходимые для переваривания белков

Патологии

Жёлчные камни

Основная статья: Жёлчнокаменная болезнь

Несбалансированная по составу жёлчь (так называемая литогенная жёлчь) может вызывать выпадение некоторых жёлчных камней в печени, жёлчном пузыре или в жёлчных путях. Литогенные свойства жёлчи могут возникать вследствие несбалансированного питания с преобладанием животных жиров в ущерб растительным; нейроэндокринных нарушений; нарушений жирового обмена с увеличением массы тела; инфекционного или токсического поражений печени; гиподинамии.[6]

Стеаторея

Основная статья: Стеаторея

При отсутствии жёлчи (или недостатке в ней жёлчных кислот) жиры перестают абсорбироваться и выделяются с калом, который вместо обычного коричневого становится белого или серого цвета жирной консистенции. Такое состояние называется стеаторея, её следствием является отсутствие в организме важнейших жирных кислот, жиров и витаминов, а также патологии нижних отделов кишечника, которые не приспособлены к столь насыщенному непереваренными жирами химусу.

Рефлюкс-гастрит и ГЭРБ

Основная статья: Дуоденогастральный рефлюкс

При патологических дуоденогастральных и дуоденогастроэзофагеальных рефлюксах жёлчь в составе рефлюксата попадает в заметном количестве в желудок и пищевод. Длительное воздействие содержащихся в жёлчи жёлчных кислот на слизистую оболочку желудка вызывают дистрофические и некробиотические изменения поверхностного эпителия желудка и приводит к состоянию, называемому рефлюкс-гастритом.[7] Конъюгированные жёлчные кислоты, и, в первую очередь, конъюгаты с таурином обладают значительным повреждающим слизистую пищевода эффектом при кислом рН в полости пищевода. Неконъюгированные жёлчные кислоты, представленные в верхних отделах пищеварительного тракта, в основном, ионизированными формами, легче проникают через слизистую оболочку пищевода и, как следствие, более токсичны при нейтральном и слабощелочном рН. Таким образом, попадающая в пищевод жёлчь может вызывать разные варианты гастроэзофагеальной рефлюксной болезни.[8][9]

Исследование жёлчи

Зонд, применяемый при исследовании жёлчи методом фракционного-дуоденального зондирования (дуоденальный зонд Левина)

Для исследования жёлчи применяют метод фракционного (многомоментного) дуоденального зондирования. При проведении процедуры выделяют пять фаз:

  1. Базальной секреции жёлчи, во время которой выделяется содержимое двенадцатиперстной кишки и общего жёлчного протока. Длительность 10 — 15 минут.

  2. Закрытого сфинктера Одди. Длительность 3 — 6 мин.

  3. Выделения жёлчи порции А. Длительность 3 — 5 минут. За это время выделяется от 3 до 5 мл светло-коричневой жёлчи. Начинается с момента открытия сфинктера Одди и заканчивается открытием сфинктера Люткенса. Во время I и III фаз жёлчь выделяется со скоростью 1 — 2 мл/мин.

  4. Выделения пузырной жёлчи. Порция В. Начинается с момента открытия сфинктера Люткенса и опорожнения жёлчного пузыря, что сопровождается появлением тёмно-оливковой жёлчи (порция В), и заканчивается появлением янтарно-жёлтой жёлчи (порция С). Длительность 20 — 30 минут.

  5. Выделения печёночной желчи. Порция С. Фаза начинается от момента прекращения выделения тёмно-оливковой жёлчи. Длительность 10 — 20 минут. Объём порции 10 — 30 мл.[10]

Нормальные показатели жёлчи следующие:

  • Базальная жёлчь (фазы I и III, порция А) должна быть прозрачной, иметь светло-соломенный цвет, плотность 1007—1015, быть слабощелочной.

  • Пузырная жёлчь (фаза IV, порция В) должна быть прозрачной, иметь тёмно-оливковый цвет, плотность 1016—1035, кислотность — 6,5—7,5 рН.

  • Печёночная жёлчь (фаза V, порция С) должна быть прозрачной, иметь золотистый цвет, плотность 1007—1011, кислотность — 7,5—8,2 рН.[10]

Воздействие на жёлчь

В медицине для увеличения концентрации жёлчных кислот в жёлчи применяют холеретики. Для стимуляции сократительной функции жёлчного пузыря используют желчегонные препараты (например, такие травы, как: чередаарникапетрушкашиповникполынь). Для изменения состава жёлчных кислот жёлчи в сторону потенциально менее токсичных жёлчных кислот применяют препараты, изготовленные на основе урсодезоксихолевой или хенодезоксихолевой жёлчных кислот.