Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
0
Добавлен:
01.04.2024
Размер:
6.34 Mб
Скачать

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

 

120

90

60

120

90

60

 

0

0

 

 

 

 

 

 

 

150

 

–10

30

150

–10

30

 

–20

–20

 

 

 

 

 

 

 

 

 

–30

 

 

 

 

–30

 

180

 

–40

0

180

–40

0

210

 

 

330

210

 

330

 

240

270

300

240

270

300

 

 

 

 

 

 

 

 

 

(a)

 

 

 

 

(b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copolar

Cross-Polar

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 18. The measured normalized (a) E-plane (xy) coand cross-polar and (b) H-plane (xz) copolar radiation pattern of narrow-band antenna configuration E.

 

0

 

 

 

 

 

 

Simulated S 1

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

(dBi)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–5

 

 

 

 

 

 

Measured S 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

Gain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Realized

(dB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulated Gain

 

–3

 

11

–10

 

 

 

 

 

 

 

 

 

 

 

 

 

Measured Gain

 

 

 

–15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–9

Maximum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–12

 

 

–20

3

4

5

6

7

8

 

9

10

11–15

 

 

 

 

 

 

 

 

 

 

Frequency (GHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 19. The simulated and measured S11 and maximum realized gain (xy plane) of narrow-band antenna configuration F.

 

0

 

 

 

 

 

 

Simulated S 1

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

(dBi)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–5

 

 

 

 

 

 

Measured S 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

Gain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Realized

(dB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulated Gain

 

–3

 

11

–10

 

 

 

 

 

 

 

 

 

 

 

 

 

Measured Gain

 

 

 

–15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–9

Maximum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–12

 

 

–20

3

4

5

6

7

8

 

9

10

11–15

 

 

 

 

 

 

 

 

 

 

Frequency (GHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 20. The simulated and measured S11 and maximum realized gain (xy plane) of narrow-band antenna configuration G.

both beneath the substrate and on the multilayered superstrate in the ARMA with shorting copper strips, two different resonances are excited in this configuration, which, in turn, provides a nar- row-band response around each SRR’s resonance frequency. The plots in Figure 20 confirm narrow-band functionality at 6.66 GHz and 7.69 GHz, with a peak measured gain of 3.02 dBi and 1.98 dBi around each SRR pair’s resonance frequency. The simulated efficiency for narrow-band configurations E and F is 86% at 6.58 GHZ and 73% at 7.31 GHz, respectively, and for configuration G, it is 84% and 72% at 6.52 GHz and 7.51 GHz, ­respectively. The antenna’s measured radiation pattern, shown in Figure 21, indicates a monopole-like omnidirectional character.

Simulated contour plots of the Poynting vector for configurations E, F, and G are shown in Figure 22, which indicates an exactly complementary response to that of notched UWB configurations B, C, and D, respectively, reconfirming the narrow-band antenna response. Antenna configurations E, F, and G are excited at 6.58 GHz, 7.31 GHz, and 6.52 GHz/7.51 GHz, respectively, because of the narrow bandpass response of the SRRand copper-strip-loaded CPW line. We can observe from the plots in Figure 22(a)–(c), all of which indicate nar- row-band excitation of the antenna (configurations E, F, and G), that the distance from the antenna’s feed port to the position of filtering action exactly matches the position of the respective SRR pair and copper strips (on the other side) on the CPW.

CONCLUSIONS

In this article, we presented a new design concept for a multifunctional antenna providing frequency-notched UWB operation and multiple narrowband configurations. We validated the design concept using an electromagnetic solver, circuit simulation, and practical measurements. The proposed technique of achieving frequency notches and narrow-band operation at the same frequency using multilayered

12

a p r i l 2 0 1 8

IEEE Antennas & PropAgation Magazine

5
20
5
20

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

 

 

 

 

 

 

 

 

electronic switches with the proper bias

 

120

90

60

 

120

90

60

arrangement to ensure radio frequency

 

0

 

0

and dc isolation. The proposed design

 

 

 

 

 

 

150

 

–10

30

150

 

–10

30

concept can be successfully employed

 

–20

 

–20

to design the UWB, frequency-notched

 

 

 

 

 

 

 

 

–30

 

 

 

–30

 

UWB, and multiple narrow-band anten-

180

 

–40

0

180

 

–40

0

nas required for CR and MIMO appli-

 

 

 

 

 

 

 

 

cations.

210

330

210

330

AUTHOR INFORMATION

 

 

 

 

 

Latheef A. Shaik (latheef.a.shaik@

240

300

240

300

ieee.org) is currently working toward his

 

270

270

 

 

Ph.D. degree in the Department of Avi-

 

(a)

(b)

 

 

onics, Indian Institute of Space Science

 

 

 

 

 

 

 

 

 

 

and Technology, Thiruvananthapuram.

 

6.66 GHz, Copolar

7.69 GHz, Copolar

 

 

 

6.66 GHz, Cross-Polar

7.69 GHz, Cross-Polar

 

His research interest are ultrawide-band

 

 

 

 

 

antennas, reconfigurable antennas, and

 

 

 

 

 

FIGURE 21. The measured normalized (a) E-plane (xy) plane coand cross-polar and

dielectric resonator antennas. He is a

(b) H-plane (xz) copolar radiation pattern of narrow-band antenna configuration G.

Student Member of the IEEE.

 

 

 

 

 

Chinmoy Saha (csaha@ieee.org) is

 

 

 

 

 

an associate professor in the Depart-

SRR configurations is unique and compact. Superstrate load-

ment of Avionics, Indian Institute of Space Science and Technol-

ing on the feed section of the antenna to accommodate one

ogy, Thiruvananthapuram. His research interests include micro-

extra pair of SRRs also helps in reducing the antenna footprint.

wave circuits, engineered materials, metamaterial-inspired

Notch frequencies can be tailored by properly choosing the SRR

antennas and circuits, dielectric resonator antennas, and anten-

dimensions beneath the ARMA and/or the SRRs printed above

nas for space and terahertz applications. He is a Senior Member

the superstrate and the latter’s dielectric constant.

of the IEEE.

 

The practical implementation of the complementary response

Yahia M.M. Antar (antar-y@rmc.ca) is a professor in the

between narrow-band and wide-band frequency-notched

Department of Electrical and Computer Engineering, Royal

functionality of the same antenna (configuration A) requires

Military College of Canada, Kingston, Ontario. He has authored

Frequency (GHz)

Frequency (GHz)

10

8

6

4

2

0

10

8

6

4

2

0

A

B

10 15 Distance (mm)

(a)

A

B

10 15 Distance (mm)

(c)

Frequency (GHz)

10

 

 

A

 

 

 

 

 

8

 

 

 

 

6

 

 

 

 

4

 

 

 

 

2

 

 

B

 

 

 

 

 

0

5

10

15

20

Distance (mm)

(b)

Poynting_Ma

2.1000e+005

1.9456e+005

1.7912e+005

1.6368e+005

1.4823e+005

1.3279e+005

1.1735e+005

1.0191e+005

8.6470e+004

7.1028e+004

FIGURE 22. Three simulated contour plots of Poynting vectors of the propagating electromagnetic energy through the longitudinal dimension of one of the slots as a function of frequency: (a) and (b) configurations E and F, indicating energy propagation at a single frequency, and (c) configuration G, indicating energy propagation at dual frequencies. Narrow-band frequencies are contributed by the corresponding SRR and copper strip.

IEEE Antennas & PropAgation Magazine

a p r i l 2 0 1 8

13

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

or coauthored more than 200 journal papers, numerous book ­chapters, and approximately 400 refereed conference papers. He is a Life Fellow of the IEEE.

Jawad Y. Siddiqui (jysiddiqui@ieee.org) is an associate professor in the Department of Radio Physics and Electronics, University of Calcutta, India. His research areas include ultrawideband antennas, frequency reconfigurable antennas, tapered slot antennas, antennas for cognitive radio applications, and ­ultrawideband radar systems. He is a Senior Member of the IEEE.

REFERENCES

[1]P. S. Hall, P. Gardner, and A. Faraone, “Antenna requirements for software defined and cognitive radios,” Proc. IEEE, vol. 100, no. 7, pp. 2262–2270, July 2012.

[2]C. G. Christodoulou, Y. Tawk, S. A. Lane, and S. R. Erwin, “Reconfigurable antennas for wireless and space applications,” Proc. IEEE, vol. 100, no. 7, pp. 2250–2261, July 2012.

[3]Y. Tawk, M. Bkassiny, G. El-Howayek, S. K. Jayaweera, K. Avery, and C. G. Christodoulou, “Reconfigurable front-end antennas for cognitive radio applications,” IET Microw. Antennas Propag., vol. 5, no. 8, pp. 985–992, June 2011.

[4]E. Ebrahimi, J. R. Kelly, and P. S. Hall, “Integrated wide-narrowband antenna for multi-standard radio,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2628–2635, July 2011.

[5]G. Augustin and T. A. Denidni, “An integrated ultrawideband/narrow band antenna in uniplanar configuration for cognitive radio systems,” IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 5479–5484, Nov. 2012.

[6]N. Ojaroudi, M. Ojaroudi, and N. Ghadimi, “Dual band-notched small monopole antenna with novel W-shaped conductor backed-plane and novel T-shaped slot for UWB applications,” IET Microw., Antennas Propag., vol. 7, no. 1, pp. 8–14, 2013.

[7]Y. Zhang, W. Hong, C. Yu, Z. Q. Kuai, Y. D. Don, and J. Y. Zhou, “Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line,” IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 3063–3068, Sept. 2008.

[8]S. M. Abbas, Y. Ranga, A. K. Verma, and K. P. Esselle, “A simple ultra wideband printed monopole antenna with high band rejection and wide radiation patterns,” IEEE Trans. Antennas Propag., vol. 62, no. 9, pp. 4816–4820, 2014.

[9]D. T. Nguyen, D. H. Lee, and H. C. Park, “Very compact printed triple band-notched UWB antenna with quarter-wavelength slots,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 411–414, Apr. 2012.

[10]H. Zhang, R. Zhou, Z. Wu, H. Xin, and R. W. Ziolkowski, “Designs of ultra wideband (UWB) printed elliptical monopole antennas with slots,” Microw. Opt. Technol. Lett., vol. 52, no. 2, pp. 466–471, 2010.

[11]L. Luo, Z. Cui, J. P. Xiong, X. M. Zhang, and Y. C. Jiao, “Compact printed ultra-wideband monopole antenna with dual band-notch characteristic,” Electron. Lett., vol. 44, no. 19, pp. 1106–1107, 2008.

[12]D. Jiang, Y. Xu, R. Xu, and W. Lin, “Compact dual-band-notched UWB planar monopole antenna with modified CSRR,” Electron. Lett., vol. 48, no. 20, pp. 1250–1252, 2012.

[13]Q.-X. Chu and Y.-Y. Yang, “A compact ultrawideband antenna with 3.4/5.5 GHz dual band-notched characteristics,” IEEE Trans. Antennas Propag., vol. 56, no. 12, pp. 3637–3644, 2008.

[14]J. Y. Siddiqui, C. Saha, and Y. M. M. Antar, “Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics,” IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 4015–4020, 2014.

[15]Y. Tawk, J. Costantine, K. Avery, and C. G. Christodoulou, “Implementation of a cognitive radio front-end using rotatable controlled reconfigurable antennas,” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1773–1778, May 2011.

[16]Ansys HFSS, Version 15, Ansys Inc., Canonsburg, PA, 2017.

[17]Keysight ADS, Version 13, Keysight Technologies, Santa Rosa, CA, 2016.

[18]J. Y. Siddiqui, C. Saha, and Y. M. M. Antar, “A novel ultrawideband (UWB) printed antenna with a dual complementary characteristic,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 974–977, Jan. 2015.

[19]C. Saha, J. Y. Siddiqui, L. A. Shaik, and Y. M. M. Antar, “Rotational circular split ring resonator array loaded CPW for dual notch and wide bandstop applications,” Microw. Opt. Tech. Lett., vol. 57, no. 5, pp. 1204–1209, 2015.

[20]V. Sanz, A. Belenguer, A. L. Borja, J. Cascon, H. Esteban, and V. E. Boria, “Broadband equivalent circuit model for a coplanar waveguide line loaded with split ring resonators,” Int. J. Antennas Propag., vol. 2012, 2012. doi: 10.1155/2012/613518.

14

a p r i l 2 0 1 8

IEEE Antennas & PropAgation Magazine