
- •Физиология возбудимых тканей
- •1.1.1. Классификация раздражителей
- •1.1.2. Структура мембраны возбудимых клеток
- •1.1.3. Различия состава внутриклеточной и интерстициальной жидкостей.
- •1.1.4. Механизмы мембранного транспорта
- •Электрохимический градиент
- •1. Активный транспорт требует гидролиза аденозинтрифосфата (атф).
- •1.2 «Животное электричество». Опыты Гальвани и Матеучи
- •1.3 Мембранный потенциал покоя. Метод регистрации, механизмы происхождения и поддержания
- •Мембранная теория происхождения мпп
- •1.4 Потенциал действия. Электрографические, электрохимические и функциональные проявления
- •1.4.1. Электрографические проявления пд
- •1.4.2. Электрохимические проявления пд
- •1.4.3. Закон «все или ничего»
- •1.4.4. Функциональные проявления пд
- •1.5 Парабиоз. Оптимум и пессимум раздражения
- •2 Нервное волокно
- •2.1. Понятие и классификация нервных волокон
- •Классификация нервных волокон по Эрландеру-Гассеру
- •2.2 Свойства нервных волокон
- •2.3 Механизмы проведения возбуждения
- •3 Синапс
- •3.1 Классификация синапсов
- •3.2 Этапы и механизмы синаптической передачи в химических синапсах
- •3.3 Свойства синапсов
- •4 Сенсорные рецепторы
- •4.1 Виды и свойства рецепторов
- •4.2 Кодирование свойств раздражителей в рецепторах
- •4.3 Понятие о рецептивном поле и рефлексогенных зонах
- •5 Железа
- •5.1 Виды желез
- •5.2 Секреторный цикл
- •Биоэлектрические особенности секреторной клетки
- •6 Мышца
- •6.1 Виды и основные функции мышц
- •6.2 Скелетные мышцы
- •6.2.1 Иннервация скелетных мышц
- •6.2.2 Классификация двигательных единиц
- •Сравнение медленных и быстрых мышечных волокон
- •6.2.3 Строение скелетной мышцы
- •6.2.4 Механизм сокращения мышечного волокна
- •6.2.5 Механика мышцы. Физические свойства и режимы мышечных сокращений Физические свойства скелетных мышц
- •Режимы мышечных сокращений
- •Одиночное мышечное сокращение
- •6.2.6. Энергетика мышцы. Системы восстановления атф, коэффициент полезного действия и тепловой выход мышцы
- •Системы восстановления атф
- •Коэффициент полезного действия
- •Тепловой выход мышцы
- •6.3. Гладкие мышцы
- •6.3.1 Расположение и строение гладких мышц
- •6.3.2 Функциональные особенности гладких мышц
- •6.4 Кардиомиоциты позвоночных
6.2.2 Классификация двигательных единиц
По морфофункциональным свойствам двигательные единицы делятся на 3 типа:
1. Медленные неутомляемые ДЕ. Мотонейроны имеют наиболее низкий порог активации, способны поддерживать устойчивую частоту разрядов в течение десятков минут (т.е. неутомляемы). Аксоны обладают небольшой толщиной, низкой скоростью проведения возбуждения, иннервируют небольшую группу мышечных волокон. Мышечные волокна развивают небольшую силу при сокращении в связи с наличием в них наименьшего количества сократительных белков – миофибрилл. Это так называемые «красные волокна» (цвет обусловлен хорошим развитием капиллярной сети и небольшим количеством миофибрилл). Скорость сокращения этих волокон в 1,5 – 2 раза меньше, чем быстрых. Они неутомляемы благодаря хорошо развитой капиллярной сети, большому количеству митохондрий и высокой активности окислительных ферментов.
2. Быстрые, легко утомляемые ДЕ. Имеют наиболее крупный мотонейрон, обладающий наиболее высоким порогом возбуждения, не способны в течение длительного времени поддерживать устойчивую частоту разрядов (утомляемые). Аксоны толстые, с большой скоростью проведения нервных импульсов, иннервирует много мышечных волокон. Мышечные волокна содержат большое число миофибрилл, поэтому при сокращении развивают большую силу. Благодаря высокой активности ферментов скорость сокращения высокая. Эти волокна быстро утомляются, т.к. содержат меньше, по сравнению с медленными, митохондрий и окружены меньшим количеством капилляров.
3. Быстрые, устойчивые к утомлению. Сильные, быстро сокращающиеся волокна, обладающие большой выносливостью благодаря возможности использования аэробных и анаэробных процессов получения энергии. Волокна 2 и 3 типов называются «белыми волокнами» из-за большого содержания миофибрилл и низкого – миоглобина.
Сравнение медленных и быстрых мышечных волокон
Характеристика |
Медленно сокращающиеся (тип I) |
Быстро сокращающиеся (тип II) |
Цвет |
|
|
Метаболизм |
|
|
Митохондрии |
|
|
Гликогена |
|
|
Утомляемость |
|
|
Толщина |
|
|
Скелетная мышца человека состоит из волокон 3 типов, однако их соотношение может значительно отличаться в зависимости от функции мышцы, а также врожденной и приобретенной индивидуальности. Чем больше в мышцах белых волокон, тем лучше человек приспособлен к выполнению работы, требующей большой скорости и силы. Преобладание красных волокон обеспечивает выносливость при выполнении длительной работы.
6.2.3 Строение скелетной мышцы
Скелетная мышца состоит из множества мышечных волокон, которые расположены пучками в общем соединительнотканном футляре и крепятся к сухожилиям, связанным со скелетом. Каждое мышечное волокно – это тонкое (от 10 до 100 мкм) вытянутое в длину (от 5 до 400мм) многоядерное образование – симпласт.
Мембраны мышечного волокна сходна с нервной, но она дает регулярные Т-образные впячивания. Внутри мышечного волокна параллельно мембране располагается разветвленная, но замкнутая система трубочек – саркоплазматический ретикулум – внутриклеточное депо Ca2+. Т-система и прилегающий к ней СР – аппарат передачи возбуждения с мембраны мышечного волокна на сократительные структуры - миофибриллы. В саркоплазме мышечного волокна можно увидеть поперечные чередующиеся светлые и темные участки – соответственно, J- (изотропные) и А-(анизотропные) диски. В соседних миофибриллах одноименные диски расположены на одном уровне, что придает волокну поперечную исчерченность. Комплекс из одного темного и двух прилежащих к нему половин светлых дисков, ограниченных поперечными Z-пластинками, называют саркомером.
Каждая миофибрилла состоит их множества параллельно лежащих толстых (миозиновых) и тонких (актиновых) белковых нитей – миофиламентов. По сечению волокна толстые и тонкие нити располагаются высокоорганизованно в узлах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых. Миозиновые нити имеют отходящие от них поперечные выступы с головками, состоящими примерно из 150 молекул миозина. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек (подобно скрученным ниткам бус) молекул актина. На нитях актина расположены молекулы тропонина, а в желобках между двумя нитями актина лежат нити тропомиозина.