
- •Глава 1 физиология и боихимия
- •Структурно-функциональная организация эукариотической клетки
- •Мембраны, их химический состав и функции
- •Структура и функции клеточной стенки
- •Компартментация протопласта растительной клетки
- •Общая характеристика класса растительных белков. Белки растений, их состав, структура и функции.
- •Общая характеристика класса углеводов и их роль в жизнедеятельности растений.
- •Общая характеристика класса нуклеиновых к-т. Их состав, структура и функции.
- •Общие свойства и функции ферментов.
- •Витамины и их роль в жизни растений.
- •Клеточная проницаемость. Гомеостаз, его значение для функционирования клетки.
- •Представление о тотипотентности клетки. Культура изолированных клеток, тканей н органов растений.
- •Глава 2 водный обмен
- •1.Общее представления о водном обмене растений.
- •2.Функции воды в растениях. Химическое и физическое свойства воды.
- •3. Термодинамические основы водообмена растительной клетки
- •4.Водный потенциал растительной ткани, методы определения и возможности использования для диагностики водного режима растений.
- •5.Осмотический потенциал растительной ткани ,, методы определения и возможност использования в сельскохозяйственной практике.
- •6.Корневое давление, физиологическая роль, зависимость от внутренних и внешних факторов.
- •7. Транспирация: виды, механизмы, физиологическая роль и зависимость от внутренних и внешних факторов. Методы учета и возможности регулирования транспирации.
- •8. Физиология устьичных движений . Значение устьиц в регулировании транспирации.
- •1. Фотоактивное движение устьиц
- •2. Гидроактивное движение устьиц
- •9. Транспирационный коэффициент и коэффициент водопотребления. Методы определения и величина у основных с/х культур.
- •Глава 3 фотосинтез
- •Фотосинтез-основа биоэнергетики растений. Значение для обеспечения автотрофности.
- •Общее уравнение фотосинтеза. Парциальные уравнения.
- •Особенности анатомо-морфологической структуры листа как органа фотосинтеза.
- •Химический состав, структура и функции хлоропластов.
- •Пигменты листа, их химическая природа и оптические свойства, методы их выделения и разделения.
- •Световая фаза фотосинтеза, её особенности и роль в процессе фотосинтеза.
- •Циклическое и нециклическое фосфорилирование.
- •Фиксация со2 у с3-растений.
- •Фиксация со2 у с4-растений.
- •Фиксация со2 у сам-растений.
- •12. Физиолого-биохимические различия между с3иС4-растениями
- •13. Фотодыхание и метаболизм гликолевой кислоты
- •14. Влияние на фотосинтез внутренних и внешних факторов. Дневная динамика и сезонные изменения фотосинтеза.
- •15. Взаимодействие факторов при фотосинтезе. Использование принципа взаимодействия факторов для регулирования фотосинтетической деятельности посевов.
- •16. Фотосинтез и урожай. Пути повышения продуктивности растений.
- •17. Методы изучения фотосинтеза.
- •18. Физиологические основы выращивания растений при искусственном освещении.
- •Глава 4 дыхание
- •Вопрос 1.Общие представления о дыхании и связанном с ним обмене веществ
- •Вопрос 2. Роль дыхания в жизни растения
- •Вопрос 3. Общая характеристика брожения (примеры реакций)
- •1.Спиртовое брожение.
- •2.Молочнокислое брожение
- •3.Маслянокислое брожение
- •Вопрос 4. Биологическое окисление. Основная дыхательная цепь
- •Вопрос 5. Классификация ферментов дыхания
- •Вопрос 6. Дегидрогеназы растений, их химическая природа и функции
- •1.Аэробные дегидрогеназы
- •2.Анаэробные дегидрогеназы
- •Вопрос 7. Оксидазы, их химическая природа и функции
- •1.Железопротеиды: гемин, цитохромоксидаза, каталаза, пероксидаза
- •2.Медьпротеиды: полифенолоксидаза, аскорбатоксидаза
- •Вопрос 8. Митохондрии, их структура и функции
- •Вопрос 9. Окислительное фосфорилирование
- •Вопрос 10. Анаэробное дыхание (Общая характеристика гликолиза)
- •Вопрос 11. Аэробная фаза дыхания: химизм, локализация в клетке и биологическая роль
- •Превращение пирувата
- •Цикл Кребса – цикл трикарбоновых кислот
- •Вопрос 12. Энергетика дыхания, вклад аэробной и анаэробной фаз
- •2 Этапа дыхания:
- •Анаэробная фаза – гликолиз:
- •Анаэробная фаза:
- •Суммарная энергия составляет 38 молекул атф при двух оборотах цикла
- •Вопрос 13. Роль дыхания в биосинтезе белков, липидов, нуклеиновых кислот, фитогормонов и др. Веществ
- •Вопрос 14. Использование энергии, высвобождающейся в процессе дыхания в растительном организме. Субстраты дыхания
- •Вопрос 15. Зависимость дыхания от внутренних и внешних факторов
- •Особенности органов, их физиологическое состояние.
- •Скорость дыхания тканей определяется их физиологической активностью.
- •Расположение ткани.
- •Возраст растений.
- •Газовый состав среды
- •Температура
- •Механические и химические раздражители
- •Вопрос 16. Дыхательный коэффициент, способ его определения
- •Природа дыхательного субстрата
- •Вопрос 18. Превращения веществ при прорастании семян
- •Глава 5 минеральное питание
- •Вопрос1. Общие представления о минеральном питании растений.
- •Вопрос 2. Роль минерального питания в обеспечении автотрофности растительного организма.
- •Вопрос 3. Критерии необходимости элементов минерального питания для растения. Группы макро- и микроэлементов(принцип деления).
- •Вопрос 4. Корень как орган поглощения и усвоения питательных веществ.
- •Вопрос 5. Физиологическая роль и структурная организация ближнего, среднего и дальнего транспорта электронов минерального питания растений.
- •Вопрос 6. Распределение по органам, накопление и вторичное использование (реутилизация) элементов минерального питания в растении.
- •Вопрос 7. Физиологические основы применения удобрений при возделывании с-х культур. Возможности использования листовой диагностики условий минерального питания.
- •Вопрос 8. Антагонизм ионов, природа и значение в жизни растений. Физиологически уравновешенные растворы и их применение.
- •Вопрос 9. Физиологическая роль азота в обеспеченности питания растений нитратными и аммонийными солями.
- •Вопрос 10. Биосинтетическая деятельность корня.
- •Вопрос 11. Физиологическая роль микроэлементов. Внешние признаки недостатка.
- •Вопрос 12. Физиологическая роль фосфора и серы, их усвояемые формы и распределение по растению.
- •Вопрос 13. Вегетационный и полевой методы исследования, их роль в изучении основных закономерностей жизнедеятельности растений и решения практических задач.
- •Вопрос 14. Физиологические основы выращивания растений без почвы, использование в практике защищенного грунта.
- •Глава 6 рост и развитие
- •1.Рост и развитие растений
- •2. Фазы роста н развития клетки, их физиолого-биохимические особенности и пути регулирования.
- •3. Онтогенез и основные этапы развития растения. Физиологические особенности и пути регулирования.
- •4. Фитогормоны. Классификация, химическая природа, общие закономерности действия. Роль в регуляции роста и развития растений.
- •5. Корреляции роста, их физиологическая природа и роль в формировании морфологической структуры растения. Регулирование при выращивании с/х растений.
- •6. Общие закономерности роста и развития растений.
- •7. Ритмика физиологических процессов (физиологические часы у растений).
- •8. Возрастные изменения морфологических признаков и физиологических функций растений и их отдельных органов.
- •9. Синтетические регуляторы роста, физиологические основы их практического применения.
- •10.Фотопериодизм растений, его приспособительное значение.
- •11. Яровизация у озимых, двуручек и двулепников, её приспособительное значение.
- •12. Регулирование роста светом (фотоморфогeнез). Экологическая роль фитохрома.
- •13. Глубокий и вынужденный покой, биологическое значение, способы его продления и прерывания.
- •14. Ростовые движения (тропизмы и настии), их значение в жизни растений.
- •15. Аллелопатия как проявление биохимических взаимодействий между растениями.
- •Глава 7 устойчивость
- •2.Физиологические основы устойчивости растений к неблагоприятным факторам среды.
- •3.Холодоустойчивость растений. Причины гибели растений и повреждения теплолюбивых растений при низких положительных температурах.
- •4. Морозоустойчивость растений. Физиологические причины гибели растений и повреждения их при действии отрицательных температур. Значение работ и.И. Туманова в изучении морозоустойчивости растений.
- •5.Зимостойкость как устойчивость растений к комплексу неблагоприятных факторов в осенне-зимний период. Причины повреждения растений и меры снижения.
- •7.Солеустойчивость растений. Типы засоления, причины повреждения и способы приспособления растений к засоленности. Пути повышения солеустойчивости растений.
17. Методы изучения фотосинтеза.
Интенсивность фотосинтеза (ИФ) – количество СО2, усваиваемое единицей листовой поверхности за единицу времени. ИФ измеряется преимущественно в мг СО2/(дм2 *ч). Реже для характеристики активности фотосинтеза используют количество О2, выделяемое единицей листовой поверхности за единицу времени.
-
Газометрический метод определения ИФ
Наиболее распространенный метод как в лабораторных, так и в полевых условиях.
Данный метод применим в любое время, не приводит к уничтожению растения и позволяет оценить прибавку сухой массы за короткий интервал времени (за минуты, часы или дни). Кроме того, этот метод дает возможность изучать каждый лист в отдельности и соответственно оценить вклад каждого яруса в фотосинтетическую деятельность растения.
Это самый производительный и точный метод учета поглощения СО2, основанный на инфракрасном анализе содержания углекислого газа в воздухе.
-
В большинстве исследований газообмена СО2 используется метод, основанный на помещении листа, растения или группы растений в прозрачную камеру. ИФ таких объектов определяют с помощью инфракрасных газоанализаторов по изменению концентрации СО2 в потоке воздуха, протекающем через камеру.
-
Обмен СО2 больших участков, например, поля, можно измерить с помощью микрометеорологического метода. При этом ИФ посевов определяют с помощью параллельных измерений концентрации СО2 и движения воздуха над посевом.
-
Радиометрический метод определения ИФ
Преимущество – может использоваться для полевого измерения. Лист или целое растение помещают в газовую среду, содержащую СО2 с радиоактивным изотопом углерода 14С. Лист или растение выдерживают в этой среде короткое точно измеренное время (обычно 60 сек.), а затем фиксируют лист или растение в жидком азоте и определяют содержание в нем 14С: чем больше интенсивность фотосинтеза листа (растения), тем больше он поглощает СО2 и, следовательно, тем больше в нем накапливается 14С.
Недостатки – приводит к гибели растения и имеет не очень высокую точность, может систематически завышать ИФ.
В последние годы появились портативные инфракрасные газоанализаторы, поэтому радиометрический метод сейчас применяется редко.
-
Полярографический метод определения ИФ
Преимущество – наиболее дешевый альтернативный метод определения ИФ
Количество кислорода, выделяемое растением при фотосинтезе, определяют поляриметрическим методом – прикладывают к листовой высечке специальный электрод и по величине полученного тока судят об интенсивности фотосинтеза
Электрод для листовой высечки можно использовать для измерения максимальных скоростей фотосинтеза в условиях насыщения СО2.
Этим же методом удобно проводить измерение скорости фотосинтеза в зависимости от освещенности.
18. Физиологические основы выращивания растений при искусственном освещении.
Светокультура растений изучает теоретические основы и методы выращивания растений с помощью искусственного облучения.
В этом случае растения не создают новых запасов энергии на земле, как в природе, а лишь трансформируют лучистую энергию ламп в химическую энергию растений.
Искусственное облучение широко применяется в тепличных хозяйствах, особенно в северных регионах страны, для выращивания овощей, а также для ускорения выведения новых сортов, теоретических исследований по биологическим наукам и других целей. Источники облучения в светокультуре – электрические лампы различных типов. Они должны удовлетворять требованиям:
-
Спектральный состав излучения ламп должен в наибольшей степени способствовать осуществлению основных физиологических процессов. Для этого необходимо, чтобы в спектре были все участки видимого излучения с преобладанием красных, синих, фиолетовых лучей. Излучение с длиной волны менее 290нм не должно попадать на растения.
-
Лампы не должны излучать большое количество теплоты, так как это нарушает нормальный обмен веществ в растениях, приводит к преждевременному цветению, плодоношению и, как правило, снижению урожая.
-
Лампы не должны быть экономичными, т.е. создавать достаточную фотосинтетическую облученность при возможно меньшем потреблении электроэнергии и выдерживать продолжительную эксплуатацию.
В настоящее время наиболее широкое применение нашли газоразрядные лампы и в меньшей степени – лампы накаливания.
Источник лучистой энергии в газоразрядных лампах – излучение газов или паров металлов, возникающее при газовом разряде
-
Ксеноновые лампы из газоразрядных источников искусственного света по спектральной характеристике в области ФАР наиболее близки к солнечному спектру. Растения разных видов, выращенные с применением этих типов ламп, имели при коротком вегетационном периоде продуктивность значительно выше, чем в поле. Однако низкий КПД этих источников (12-13%) и сложность эксплуатации препятствуют их широкому применению в светокультуре растений.
-
Металлогалогенные лампы выпускаются с добавками йодидов металлов, более перспективны в сравнении с ксеноновыми лампами, так как обладают высоким КПД (25-30%) и относительно полным спектром.
В лампах накаливания, отличающихся невысокой стоимостью, простотой в обращении и высокой мощностью лучистого потока, источником излучения служит раскаленная вольфрамовая нить.